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AFIT/GE/ENG/95M-02

Abstract

Target detection is a high priority of the Air Force for the purpose of reconnaissance
and bombardment. This research investigates and develops methods to distinguish ground
targets from clutter (i.e. foliage, landscape etc.) in Wide Angle Synthetic Aperture Radar
(WASAR) images. WASAR uses multiple aspect angle SAR images of the same target
scene. The WASAR data was generated from a pre-release software package (XPATCH-
ES) provided by the sponsor (WL-AARA). A statistical analysis and feature extraction is
performed on the XPATCH-ES data. This analysis showed that the standard deviation
of target pixel intensities is significantly higher than for clutter. Using this feature and
a 2-D correlation coefficient a simple discriminator that effectively separates targets from
clutter false alarms is presented. Polarimetric and wide angle covariance matrices are
estimated and analyzed. From an analysis of the wide angle covariance matrix it is shown
that natural clutter has in general a uniform radar return for changing aspect angles,
whereas the radar return for a target varies. That is, trees and ground clutter look the
same at different angles whereas targets look considerably different at even small changes
in aspect angle. Based on this analysis, two new wide angle algorithms, the WASAR
Whitening Filter and the Adaptive WASAR Whitening Filter (AWWTF') are developed.
The target detection performance of polarimetric and multi aspect angle image combining
algorithms are quantified using Receiver Operating Characteristic curves and target to
clutter ratios. It is shown that wide angle processing provides superior target detection

performance over polarimetric processing. In particular the AWWEF algorithm provided

xiii




a 2-3 dB improvement in target to clutter ratio than polarimetric techniques such as the
Polarimetric Whitening Filter. Combinations of wide angle and polarimetric algorithms
were used to achieve a 13.7 dB processing gain in target to clutter ratio when compared
to unprocessed images of the target scene. This represents a significant improvement in

target detection capabilities.




Investigation of Ground Target Detection Methods
in Fully Polarimetric Wide Angle

Synthetic Aperture Radar Images

1. Introduction

The detection and identification of military targets are important Air Force missions.
Synthetic Aperture Radar (SAR) images have been used extensively for the purposes of
military target detection. Recently, the Gulf War highlighted: (a) the need for efficient
target detection algorithms (e.g. detection of Scud missile Jaunchers); and, (b) the success
of the J-STARS system (which uses SAR). The sponsor of this research, Air Force Wright
Laboratories (WL-AARA), is especially concerned with evaluating the advantages of using
Wide Angle Synthetic Aperture Radar (WASAR) multiple images and, for this reason, this
research was commissioned to develop and quantify the effectiveness of target detection

algorithms using fully polarimetric WASAR images.

1.1 Background

Synthetic Aperture Radar (SAR) is used to form map-like images of the earth’s
surface. SAR is operated from a moving platform such as an aircraft or a satellite and
the motion of the platform is used to synthesize the effect of a large antenna aperture.
An image of the earth’s surface, i.e. a target scene, is formed by digital signal processing

algorithms contained within the SAR. Figure 1 is a simple schematic of the operation




of a SAR from an aircraft. This figure demonstrates how the ground (target scene) is
illuminated with electromagnetic energy, and the scattering of this energy returned to the

radar is used to form an image of the earth’s surface.

RADAR PLATFORM

INBEAM

RANGE

ﬂmmumo

Figure 1. SAR Image Formation

A standard SAR provides only one image of the target scene from a particular aspect
angle. Fully polarimetric SAR imaging, as described in [8, 24, 1], improves on this ability
as it produces three images of the target scene, at the one aspect angle, by illuminating
the scene with electromagnetic waves at three different polarizations. The three fully
polarimetric radar returns are the: HH, HV, and VV. The HH is so named because it
illuminates the scene with horizontally polarized waves and the returns are detected with
a horizontally polarized antenna. Similarly, the HV signal is transmitted horizontally but
received vertically; and the VV is transmitted vertically and received vertically. Fully
polarimetric processing (the combination of the images produced by each polarization)

shall be discussed in the following section.




Target detection capabilities could be further improved by using a fully polarimetric
Wide-Angle SAR (WASAR). WASAR offers multiple images of a single target scene at
different aspect angles and polarizations (as shown in Figure 2). For example, a target
scene illuminated by a fully polarimetric WASAR from aspect angles of £45° and 0°;
would produce nine images. Unfortunately, WASAR is now in the early stages of the
conceptual system design phase. Accordingly, one of the objectives of this research is
to prove the value of WASAR and investigate its operational feasibility. The Air Force
Institute of Technology (AFIT) has begun research into target detection using WASAR
data. Research by Knurr [11] and Sumner [25] proved that target detection performance
is enhanced by using fully polarimetric images from multiple aspect angles. Further, their
research recommended continuing work in this area, specifically in statistically analyzing

and developing algorithms to combine the fully polarimetric, multi-aspect angle images.

Target Scene

Figure 2. Wide Angle SAR Image Formation

1.1.1 Polarimetric Processing.  Polarimetric processing is a means of optimally
combining the HH, HV and VV images in order to improve target detection. Targets
and clutter have differing geometrical characteristics leading to differing electromagnetic

signatures. With the proper polarimetric processing, the radar return from clutter and




target can be more easily distinguished from each other [9]. Further, a complex target
can be considered as comprising a multitude of independent objects that scatter energy
in all directions [23]. Accordingly, the target may provide a stronger radar return or
‘glint’ at a different polarization. Gaussian clutter models, which characterize homogeneous
clutter regions have been developed by Novak [15]. These algorithms use fully polarimetric
data and optimally combine the HH, HV and VV images in some sense. In particular,
the polarimetric algorithms presented by Novak include: the polarimetric span of the
three complex elements (HH, HV and VV); the Polarimetric Whitening Filter (PWF);
the Polarimetric Matched Filter (PMF); and the Polarimetric Optimal Weighted (POW)
sum of intensities. These algorithms were developed by analyzing the covariance matrix
of the polarimetric data, which characterizes the relationship between the radar returns
at different polarizations. Non-Gaussian clutter models have been developed in a similar

manner by Lee [12], Oliver [18] and Jakeman [10].

1.1.2 Multiple Image Processing.  Multiple image processing is a means of com-
bining the images taken at different aspect angles to further improve target detection. The
multiple images are compared by a change detection algorithm which compares data from
two or more co-registered images and looks for differences. These images are generally
obtained by using multiple flight passes to image the target scene at different times. One
example of a two pass change detection algorithm is presented by Li [13]. The major dis-
advantage of the two pass imaging method is the large variance in the target’s signature
in the two images. This is caused because the aircraft cannot fly exactly the same flight

path on its second pass. Therefore, targets seen in each image are not exactly correlated




on a pixel to pixel basis. Hence, the combined target’s signal power is lower than if the
two images were perfectly aligned. Other disadvantages with the two pass multiple image
method arise in a hostile environment when: a) an aircraft may not get the chance to make
a second flight over enemy territory; and b) mobile targets such as scud missile launchers

could be moved prior to the second flight.

An alternative method for obtaining multiple images with a single flyover is proposed
by Halverson [7]. His technique utilizes change detection algorithms to exploit differences
in aspect angle dependency between target scatters and clutter scatters. The multiple
images are formed from a single flight pass of a target scene that is imaged from several
aspect angles. Early results of this research have shown comparable performance to that
achieved by two pass change detection using co-registered images. Another two multiple
image processing detection algorithms, to enhance stationary target detection, have been

developed by Sechtin [21].

In Sechtin’s first model, detection algorithms are applied to the individual images
and then the detections are combined by forming a detection list for all the images in
the data set. A target is declared in a region if a certain number of the individual image
detection lists contain similar information . In the second model, the images are combined
and then the detection algorithms are applied to the combined image. However, because of
difficulties in collecting a sufficient amount of clutter data some of Sechtin’s results are in-
conclusive. Overall, current research indicates that multiple aperture detection algorithms

show great promise for the detection of stationary targets embedded in clutter.




1.2 Problem and Objectives

At this stage WASAR is a theoretical proposition. The main purpose of this research
is to enhance our ability to detect a target by investigating target detection techniques
using: fully polarimetric SAR images; multiple aspect angle (multi-look) SAR images

(WASAR); and a combination of both.

In particular, the objectives of this research are as follows:

1. Generate SAR data sets which include clutter and ground targets using a computer

code provided by the sponsor and written by Loral.

2. Examine/develop various detection techniques and evaluate their applicability to the

SAR data sets.
3. Apply these techniques to the SAR data and determine their performance.

4. Justify the feasibility of WASAR based on the research results.

1.3 Scope

The scope of this research is confined to the list of tasks given in Section 1.2 Problem
and Objectives. Within these bounds, clutter models of various statistics are developed
to assist with the understanding and development of algorithms used to detect targets
embedded in clutter of different statistics. However, the focus of this research is actually

target detection using fully polarimetric multi-aspect angle images.




1.4 Assumptions

The target detection algorithms and the conclusions reached from these results are
based on the WASAR data provided from the sponsor. The XPATCH-ES WASAR data
and their underlying statistics have not been validated by the sponsor. Accordingly, this
research assumes that the WASAR generated data from XPATCH-ES is a good model of

actual wide angle SAR data.

1.5 Thesis Organization

Chapter II is a review of relevant literature relating to polarimetric processing, tar-
get detection and clutter statistics. The method used to optimally combine the multiple
polarimetric WASAR images, into the one intensity image for target detection purposes,
is presented. Further, the polarimetric WASAR data (provided by the sponsor) used in

this research shall be discussed.

Chapter III presents a statistical analysis of the data used. In addition, clutter models
of different statistics are developed and generated. —Chapter IV presents the results of
applying the algorithms developed in Chapter II to the XPATCH-ES data. Chapter V

provides a conclusion and recommendations for further research in this area.




II. Theory and Data Generation
2.1 Overview

In this chapter, the theory of polarimetric and wide angle target detection is briefly
reviewed. Then, the method used in this research to optimally combine the polarimet-
ric and wide angle images into the one intensity image for target detection purposes is
presented. Two metrics, the standard deviation to mean ratio and the target-to-clutter
ratio, that will be used to quantify the performance of the polarimetric and WASAR target
detection algorithms, are defined. Two new algorithms developed during this research to
combine multi aspect angle images, the WASAR Whitening Filter (WWYF') and the Adap-
tive WASAR Whitening Filter (AWWTE'), are detailed. A review of the statistics of clutter
and targets are presented. The statistical characterization of clutter and targets is used
to design detectors in order to determine the Uniformly Most Powerful (UMP) test for
the detection of targets. Finally, the polarimetric WASAR data that will be used in this
research shall be discussed. The results of using the target detection algorithms developed
in this chapter with the polarimetric WASAR data provided by the sponsor are presented

in Chapter IV.

2.2  Polarimetric Theory

Polarimetric processing is a means of optimally combining the HH, HV and VV
images in order to improve target detection and reduce speckle. Clutter refers to the
terrain surrounding a target. It can be man-made such as buildings, factories, houses etc; or

natural clutter such as trees, grass, desert etc. Speckle is a coherent scattering phenomenon




that is caused when the scattering volume is deeper than a wavelength. Speckle is the main

reason for the lack of optical quality in high resolution SAR imagery.

Targets and clutter have differing geometrical characteristics. With the proper po-
larimetric processing, the radar return from clutter and target might be distinguished from
each other [9]. Further, a complex target can be considered as comprising a multitude
of independent objects that scatter energy in all directions [23]. Accordingly, it should be
considered whether the target will provide a stronger radar return or ‘glint’ at a different

polarization, aspect angle or frequency.

Gaussian clutter models, which characterize homogeneous clutter regions have been
developed by Novak [15]. These algorithms use fully polarimetric data and optimally com-
bine the HH, HV and VV images to reduce image speckle. In particular, the polarimetric
algorithms presented by Novak include: the span of the three complex elements (HH, HV
and VV); the Polarimetric Optimal Weighted (POW) sum of intensities; the Polarimetric
Matched Filter (PMF); and the Polarimetric Whitening Filter (PWTF). These algorithms
were developed by analyzing the covariance matrix of the polarimetric data, which charac-
terizes the relationship between the radar returns at different polarizations. The covariance
matrix is defined as )y = E{XXT}, where { is the complex conjugate transpose and X is
the radar return vector consisting of the three complex elements HH, HV and VV, defined

as

HH; + jHH,

X = | HV;+jHV, |- (1)

VVi+jVV,




The covariance matrix has the following form

;
E{|HH|"}  E{(HH)(HV)'} E{(HH)(VV)'}

2= | B{EVHEYY  E{IHVEY  E{HV)(VV)) @

| E{(VV)(HH)} E{(VV)HV)}  E{|VV['}

where E stands for the statistical expected value and “*’ is the complex conjugate. For
a Gaussian polarimetric clutter model, Novak [15] has shown that the covariance matrix

simplifies to the following form

o 0 pv7Y
=1 0 € o (3)
Vo
where o, p, v and ¢ are defined as

o = E{HH|* (4)
_ E{HH -VV*}

v = JEIEABEIVVT ®
_ E{lvvy

R g ©
_ E{|HV|*}

© = E{EAy @

Non-Gaussian clutter models have been developed in a similar manner by Lee [12], Oliver [18]

and Jakeman [10].

10




2.3 Polarimetric Algorithms

This section derives and details the polarimetric algorithms used in this research.
These algorithms combine the polarimetric measurements (HH,HV,VV) to produce an
intensity image that will minimize speckle and maximize target detection. But initially,
two metrics used to quantify the performance of each algorithm (with regard to reducing

speckle and improving target detection capabilities) shall be defined.

2.3.1 Metrics. Two metrics commonly used to measure and quantify the im-
provement of the polarimetric processing techniques are the standard deviation to mean

ratio and the target to clutter ratio.

2.3.1.1 Standard Deviation to Mean Ratio (S/M).  The standard deviation
to mean ratio is calculated by computing an estimate of the standard deviation of the
pixel intensities of the image and dividing by an estimate of the mean value of the pixel

intensities of an image. Mathematically, this ratio is defined as

S stdev{y}
M E{y ®)

where y is a random variable that denotes pixel intensity. The mean pixel intensity is

estimated by

1 n—1
by = — > (9)
i=0

where n is the number of pixels in an image. The standard deviation is calculated by

taking the square root of an estimate of the variance of the pixel intensities. The variance
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is estimated by

1 n—1
var{y} = =3 lul* - u. (10)
=0
A low S/M ratio indicates a minimum speckle image.

2.3.1.2 Target to Clutter Ratio (T/C).  The target to clutter ratio is defined

as

or _ E{}

oc ~ E(a) (1)

This metric quantifies any improvement gained from the polarimetric processing, it is a
measure of the average output power in the target region relative to the average output
power in the clutter region. The T/C metric is computed by extracting the pixels in an
area around the known location of the targets (i.e. 16 x 10 pixels - refer below for target
window size), computing the average power of these pixels and dividing this value by the
average power of the pixels remaining after the targets have been extracted. All the targets
used in this research are M-35 trucks. By analyzing the images it was determined that the
typical target size of the M-35 trucks is 16 pixels long and 10 pixels wide. The target pixel
window can be easily adjusted to search for any size target. For example, if the objective
of a search is to detect scud missile launchers then a longer narrower pixel window might

be more appropriate.
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2.8.2 Polarimetric Average. The polarimetric average of the three complex

images is defined as

Average = —(|HH|*+|HV|>+|VV]?). (12)

1
3
The polarimetric average is a simple and suboptimal way of combining the three images

to produce a combined intensity image.

2.8.83 Polarimetric Span.  The polarimetric span of the three complex images is

defined as
SPAN = |HH|2—|-2|HV|2+ ]VV|2. (13)

The span is simply the addition of the intensities of the polarimetric information. The
squaring operation enhances high intensity values and lower intensity values are de-emphasized.
Further, phase information is not used in the span calculation and the weighting coeffi-
cients of each polarimetric image are not optimally derived. Accordingly, the span is also

a suboptimal algorithm.

2.3.4 Polarimetric Whitening Filter (PWF). The PWF, developed by Novak,
was derived to optimally combine the HH, HV, VV measurements to produce an intensity
image having a minimum amount of speckle. The optimization problem involves processing
the polarimetric measurement vector X (X = [HH,HV, VV]T) with a quadratic weighting

matrix A such that the output image pixel intensity is
y = XxTax
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where X T is the complex conjugate transpose of the radar measurement vector X. The
objective of the optimization is to find a weighting matrix A that yields an output image
having minimum speckle. The S/M ratio (given by equation 8) is the metric used to

measure the speckle. Thus,

S stdev{y} _ (var(XTAX))%

M~ E{y) E2(xTAX)

This expression is simplified by using the following two identities

E(xtax) = 23: A

3
var(XTAX) = Z A
i=1

where ); are the eigenvalues of the matrix ¥x A. Using a Lagrange multiplier the S/M
ratio is minimized so that all the eigenvalues of Xx A are equal to one [15]. Thus, the
optimal weighting matrix is ¥x A = 1 or A = %©%'. Accordingly, the minimum speckle

image is constructed as
y = Xizgix (14)

where X %' is the inverse covariance matrix of the polarimetric radar measurement vector
X. Using a Gaussian clutter model, Novak determined that the covariance matrix simplifies

to the form shown in Equation 3 and thus the PWF is defined as

2 2 V2 vV _ _
pwp _ MLHPEIVVE | JHVE BV eosonn = duv =) (1o
oun(1—|p?) OHHE opn(1— |27
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where p, v and ¢ are defined in Equations 5, 6 and 7, and ¢gm, ¢vv and ¢, are the
phases of the complex quantities HH, VV and p. As this equation was derived through
a Lagrange minimization of the S/M ratio, the PWF is the optimum combination of the
polarimetric measurements. The resulting intensity image has minimum speckle as will be
shown in Chapter IV. The PWF combined image can be formed by either directly using
Equation 15 or by estimating the polarimetric covariance matrix and using Equation 14.
All PWF images in this research are formed by estimating the polarimetric covariance

matrix and using Equation 14.

2.8.5 Polarimetric Optimal Weighting (POW).  The optimal (minimum speckle)
weighting algorithm, developed by Novak [15], is a simplified version of the PWF and is

defined as
1 2 1
POW = |HH|+ #IHVP + ;]VV|2 (16)
where p, v and ¢ are defined in Equations 5, 6 and 7.

2.3.6 The Polarimetric Matched Filter (PMF). The PMF was developed by
Novak in a similar way as the PWF. However, the aim of this algorithm is to combine the
HH, HV, and VV SAR returns into an intensity image that maximizes target detection.
Accordingly, the PMF is derived by performing a Lagrange maximization of the T/C
metric. The resulting PMF image is formed from the linear combination y = hix. Thus,

the object of the optimization is to find the complex vector h that maximizes the T/C
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metric. Thus,

Novak [17] shows that the optimal processor h, is the eigenvector corresponding to the
maximum eigenvalue of the matrix X;%;. A major disadvantage of the PMF is that both
the target and clutter covariance ¥; and X, are required @ priori. Typically, in most target

detection scenarios, this information is unknown.

2.4 Multiple Aspect Angle Algorithms

Fully polarimetric WASAR offers multiple images of a target scene at different aspect
angles and polarizations. The objective of the multiple aspect angle algorithms is to ex-
ploit a characteristic or feature of the WASAR data that will discriminate between targets
and clutter false alarms. The fully polarimetric SAR target detection algorithms (such
as the PWF, SPAN, POW - discussed in Section 2.3) exploit the polarimetric properties
of the data to discriminate between targets and clutter. Previous AFIT research [11, 25]
into target detection using WASAR data investigated various techniques such as subtrac-
tion and exploiting the standard deviation feature. The results indicated that even the
most simple WASAR methods showed an improvement over common SAR methods. This
research shall derive algorithms that will optimally combine the WASAR polarimetric mea-
surement vector X such that the combined image is of the form y = X T AX. This is the
same form as the PWF. To this end, two new multi aspect angle algorithms, the WWF

and the AWWTF are developed. The primary objective of the optimization problem is to
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find a weighting matrix A that will minimize the S/M metric or maximize the T/C metric.

The fully polarimetric WASAR measurement vector X shall have the following form

X = : (17)

and the single polarity WASAR radar measurement vector shall have the following form

HH_ 50
HH_50
HH_ 5
X = | HHp. |. (18)
HH, s
HH 500
HH 450

The radar measurement vector X can also be modified to include frequency, polar-

ization and multiple aspect angle by expressing X as
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[ HH_450030m12) ]
HV_i5080h2)
V'V _4se(smhz)

HH | y503p12)
HV, s5030n2)
VV,ias08mnz)

HH_500100mn2)
HYV_450(100h2)
VV_sseomns)

HH | i5010Mmn2)
HYV 450(100n2)
VV,iaseomnz)

For example, if data were recorded at 8, 9 and 10MHz at aspect angles of —45° to +45°
at 15° increments and fully polarimetric, 63 images would be generated. Therefore, X
would be a 63 x 1 measurement vector, and the resulting covariance matrix would be 63
x 63. Alternatively, X could be adjusted to include any combination of the parameters of

frequency, polarization and multiple aspect angle that would maximize target detection.

2.4.1 WASAR Average.  The WASAR average image (formed from y = XTAX)

is defined, for the single polarity (HH) case, as
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(17 0o . . . . 0 |[ HH_ 4 |
0o Y70 .. . . HH_300
S HH_i5

WASARwe = X1\ . . . .. . . HHpe |.  (20)
S HH, 5
0 . . .. 1/7 0 || HHuse
o . ... 0 17| | HHyue |

The WASAR average algorithm is a suboptimal method of combining the WASAR
images. Knurr [11] and Sumner [25] used a direct average of pixel amplitudes to form an
average image (i.e. ¥y = & SN @;). An average pixel intensity algorithm is used rather
than an average of pixel amplitudes because all the WASAR algorithms form intensity
images. Thus, when comparing WASAR algorithms intensity images can be compared to
intensity images. The WASAR average intensity algorithm is used as a benchmark for

comparing the other WASAR algorithms.

2.4.2 WASAR Whitening Filter (WWF).  Following the same derivation detailed
in Section 2.3.4 for the PWF the WWF developed during the course of this research is

defined as
wwF = xis3x (21)

where X x is the covariance matrix of the multiple aspect measurement vector X, defined in
Equation 18 . Although the primary objective of the PWF is to reduce image speckle it has
been shown that the PWF also improves target detection performance [16, 3]. Hence, the
WWF image promises to provide better target detection performance than the WASAR

average image.
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2.4.8 Adaptive WASAR Whitening Filter (AWWF). The AWWTF, also developed
during the course of this research has the same form as the WWE defined at Equation 21.

However, the wide angle covariance matrix is adaptively formed from local pixels.

The AWWTF image is formed by segmenting the larger image of the target scene into
smaller non-overlapping windows. The optimum size of the window depends on the target
size, and for the XPATCH-ES data used in this research a 10 x 10 pixel sized window was
determined to be the optimum window size. The method used to calculate the optimum
window size for the AWWTF algorithm is discussed at Section 4.2.3. For each window
the wide angle covariance matrix is computed. Through an analysis of the wide angle
covariance matrix (presented at Section 3.2.5.2) it was shown that the wide angle covariance
matrix for clutter is a diagonal matrix with approximately uniform diagonal elements. For
a target, the wide angle covariance matrix is also a diagonal matrix, however, the values
of the diagonal elements vary. This analysis, as will be seen, proved the assumption that
natural clutter fooks’the same at different aspect angles whereas targets ‘look’ considerably
different at even small changes in aspect angle. Accordingly, if the pixel window contains
just clutter then the normalized (to the maximum return) wide angle covariance matrix
for this image segment is simply the identity matrix. Thus, each newly formed pixel in
this segment of the target scene is simply the sum of the pixel intensities from each of
the individual image segments. However, if the pixel window contains a target, then the
inverse normalized wide angle covariance matrix enhances the weaker aspect angle returns.
Figure 3 is a schematic illustrating the formation of the AWWEF image. The following
mathematical example, for a three aspect angle case, demonstrates the formation of the

AWWTF image. Pixel windows are extracted from each of the three aspect angle images.
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Figure 3. Generation of AWWEF Image

If the pixel window contains just clutter the inverse normalized WACM for this window is
approximately the identity matrix, and all the pixels within the window will be formed in

the following way

10 0] [ HH s
Y = [ HH_450 HHOD HH+450 } 010 HHOO
= lHH_4502+|HH00|2+|HH+450|2

where “*’ is the complex conjugate of the measurement vector. Thus, each pixel in the
window is simply the sum of the pixel intensities. However, for a target, the diagonal
elements of the adaptive wide angle covariance matrix vary. A typical target WACM (refer

Section 3.2.5.2 for actual results) is
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02 0 0
EC = 0 1 0
0 0 5

the inverse wide angle covariance matrix for this example is

T =

O O O
o = o
N OO

and the pixels within the window will be formed as

5 0 0
Y = | HH 5 HHj HHpse | |0 1 0 HHygeo
0 0 2

= 5|HH_45012+ |H_Hoo

2 4 2|HH 450

Thus, all the pixels within the target window are enhanced. This result promises to

significantly enhance target detection capabilities.

2.4.4 WASAR Matched Filter (WMF).  Following the same derivation detailed
in Section 2.3.6, the WMF is defined as y = hTX, where h is the eigenvector corresponding
to the maximum eigenvalue of the matrix X;'X;. The WMF is not implemented as this

algorithm relies on a priori information of the targets to form the target covariance matrix.

2.4.5 Combinations of Polarimetric and Wide Angle Algorithms.  The polarimet-
ric WASAR images can be combined into the one image to be used for target detection in
a number of ways. First, if the target scene is imaged from seven different aspect angles

at three different polarizations, the 21 images can be directly combined using either the
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WWF (21 x 21 covariance matrix) or the AWWTF to form a single image for target de-
tection purposes. Alternatively, the polarimetric images could first be combined using the
polarimetric algorithms (i.e. Average, PWF, Span etc.) and then these seven aspect angle
polarimetric images could be combined using wide angle algorithms (such as the WWF
or AWWTF). Figure 4 is a simple schematic showing both methods of combining the 21

polarimetric WASAR images.

HH HH
Y -45
45| HY 45 | v PWF
w
w
[ ]
S
Y -30
L WWF »
. ———n WWF
Combined L
[ ]
image Y430 Combined
Image
HH
HH
45 w a5 | BV PWF s
w v

(a) (b)

Figure 4. Two methods of combining WASAR Polarimetric images (a) Combining all as-
pect angles and polarizations, (b) Combining Polarizations and then combining

these images at the different aspect angles using either WWF or AWWTE algo-
rithms.

2.5 Target Detection Theory

Target detection is the process of distinguishing targets from background clutter and
noise. The detection process of a SAR is automatically performed within the SAR receiver.

Accordingly, the detection criteria must be carefully specified. Target detection is specified
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in terms of a threshold, and decisions are based upon the outcome of a comparison between
a Pixel-Under-Test (PUT) and a threshold level. If the PUT exceeds the threshold level
the pixel is said to be a target pixel. Accordingly, the detector classifies the pixels within a

target scene as one of two hypothesis, Ho: no target present and H,: target present, where

Hy : €8, (Notarget)

H, : 0¢€6, (Target).

This is a binary test of Hy : 6 € 6, versus H, : ¢ € 6 and takes the form

1 ~ Hl, x €A
$(z) =
0 ~ Ho, xER

This equation is interpreted as: the test function ¢(z) equals 1 and hypothesis H, is
accepted if the measurement z lies in the acceptance region (i.e. a target has been de-
tected). If the measurement x lies in the rejection region the test function is assigned 0

and hypothesis H, is accepted.

The threshold level is determined by the probability of false alarm. Incorrectly setting
the threshold level can cause an error in the decision process. There are two types of errors
that can be made. A type I error occurs when clutter is mistaken for a target. This type of
error is referred to as a false alarm and occurs whenever the clutter exceeds the threshold
level. A type II error is when a target is erroneously considered to be clutter. This type
of error is known as a missed detection. A large threshold reduces the probability of a

false alarm, however, the probability of missed detections increases. Accordingly, there is
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a tradeoff between the two types of errors. System operational requirements determine the

threshold level setting and hence the importance of the two types of errors.

If the clutter and the target plus clutter distributions are exactly known, then the
Neyman-Pearson detector provides the most powerful test (as it optimizes the probability of
detection for a given probability of false alarm) of size () for testing the simple hypothesis
versus the simple alternative. Mathematically, the Neyman-Pearson detector is a likelihood

ratio test of the form

where [(z) is the likelihood ratio defined as

feals)
(z) = ==
Jwlso)

and t is the threshold level.

Therefore, the probability of false alarm ( Pf,) also known as the size (a) is defined as

a = Pfa P(,|50)[l(:c) > t]

[ fermar (22)

For a given P;, the threshold can be calculated from Equation 22. The probability of

detection (Pp) also known as the power () is defined as

i

ﬂ = PD P(xlsl)[l(it) > t]

= /Too Saisn(Ddl (23)
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and the probability of a missed detection Py, is defined as

PM = 1—PD.

Figure 5 is a plot showing the probability distributions of the two classes in the detection
problem. For the detection of targets embedded in clutter, S1 could be the probability
distribution of the clutter and S2 the probability distribution of the targets. Figure 5
also shows the probability of false alarm (P;,) and the probability of detection (Pp). The
probability of false alarm (as shown in Figure 5) is the area of S1 (clutter pdf) from the
threshold (t) to 400, and the probability of detection is the area of S2 (target pdf) from the

threshold to +oco. Plots of Pp versus Py, are known as Receiver Operating Characteristics

1(x)

p(x! 5)P(s)

p(x! s )P(s)

plerrl s) x

P
@ Pd

- -

Figure 5. Probability of Detection and False Alarm

(ROC) curves and these are used to quantify the performance of a detector. Figure 6 is a
typical plot of ROC curves. If the test is a good one then the curves should be above the

chance line (which characterizes the performance of a pure guess) shown in Figure 6.
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Figure 6. Receiver Operating Characteristics (ROC curves)

In a target scene the clutter: mean, variance, and type of distribution vary within the

scene. For example a group of trees within a grassy field will have a different distribution,

mean and variance than the grass surrounding it. Further, the distributions of the clutter

and the target are not known a priori. In this situation the Neyman-Pearson detector,

which has a constant threshold, does not produce a constant false alarm rate. Accordingly,

a target detection system’s performance is often degraded by a varying number of false

alarms. To improve performance, a Constant False Alarm Rate (CFAR) algorithm is

used. CFAR algorithms provide detection thresholds in automatic detection radar systems.

These detection thresholds are relatively immune to clutter and allow target detection with

a constant false alarm rate. A two parameter CFAR detector is defined by

T — e
O,

>1ip
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where z represents the test pixel, u. and o, are estimates of the mean and standard
deviation of the local clutter, and ¢p is the detection threshold. A target is declared if the

ratio defined in equation 24 exceeds the detection threshold.

A CFAR detector is implemented as follows. For this work a rectangular window,
called a reference window, is centered around the PUT. A typically sized window is 60
pixels x 60 pixels. The statistics within this reference window are estimated and the

detector is defined by the following rule

T — fhe > Terar (Target)

O

< Tcrar (No Target)

where z; is the amplitude of the test pixel, p. is an estimate of the mean of the local pixel
amplitudes, o, is an estimate of the standard deviation of the local clutter and Teparg is
a threshold level that defines the false alarm rate. Figure 7 is a sketch of the reference

window used in the two parameter CFAR detector.

REFERENCE WINDOW

PUT

Target

60 pixels

60 pixels

Figure 7. Reference Window of two parameter CFAR detector

28




As shown in Figure 7 the test pixel is in center of the defined local region and the
60 x 60 pixels surrounding the PUT are used to estimate u, and o, of the local clutter. If
the detection statistic exceeds Tcpap the test pixel is declared a target pixel, if it is not it

is declared a clutter pixel.

For a Gaussian amplitude distribution of the clutter, the CFAR detector provides a
constant false alarm rate. However, clutter distributions are typically not Gaussian. In
spite of this fact, the two parameter CFAR detector defined above proves to be an efficient

algorithm for detecting targets in clutter and is used extensively.

2.6 Statistical Analysis of Clutter and Targets

The statistical characterizations of clutter and targets are used to design detectors
that will differentiate between the two hypotheses (Ho:No Target and H;:Target) in the
target detection decision problem. The objective is to design an invariant detector that
is Uniformly Most Powerful (UMP) of size o for testing H, versus H;. Accordingly, the
first step in solving the target detection problem is to determine the distribution of the
two classes (Hy and H;). Clutter from different terrain and grazing angles has different
statistics. For example, the log-normal distribution has been found to be a good fit for sea
clutter and land clutter at low grazing angles < 5°, whereas the Weibull clutter model is
used for grazing angles between 1 and 30 degrees [20] and sparse forests observed by a high
resolution radar [27]. The Rayleigh model is used for clutter whose amplitude probability
distribution encompasses a limited dynamic range (i.e. bare ground surfaces, agricultural
fields and dense forest canopies). In the following sections clutter of different distributions

will be presented and the techniques that will be used to determine the best distribution fit
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for the XPATCH-ES clutter and target data (provided by the sponsor) shall be developed.

A complete statistical analysis of the XPATCH-ES data is presented in Chapter III.

2.6.1 Gaussian Distribution. Gaussian statistics have been assumed in many
cases to model clutter [15, 17]. Typical terrain clutter distributions have a shape that
is heavy tailed when compared to the Gaussian distribution. The Gamma, Weibull, K-
distributed and log-normal distributions have been found to more accurately model terrain
clutter [6, 22, 27]. However, a statistical analysis assuming Gaussian clutter statistics pro-

vides a way of theoretically modelling clutter. The Gaussian probability density function

(pdf) is defined as

flz) =

e;vp{~%} —0 <2< (25)

1
V2wo
where, p is the mean, o is the standard deviation and o? is the variance.

2.6.2 Gamma Distribution. The gamma distribution provides a good fit for
many types of terrain and is used in many non-Gaussian clutter models [15]. Further, the
two-parameter gamma pdf provides a large number of functions from which to choose. The

gamma pdf is defined as

f(ZB) — %(%)u—1r(1y)exp{—%} 0<z < (26)

where Z and v are the mean and the variance of the distribution.

2.6.3 Weibull Distribution. The Weibull distribution has been found to be a

good fit of the radar clutter returns, if the measured data is from complex terrains such as:
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sea clutter [22]; land clutter at low grazing angles [2]; and sparse forests observed by a high
resolution radar [27]. Other papers that have cited the Weibull distribution as a good fit
for radar clutter include Novak [15, 14]; Greenstein et al [6]; and Trunk and George [26].

The pdf of the Weibull distribution is

f(z) = g—(%)”_lemp{—(g)"} 0< e <o (27)

where 7 is the scale parameter and v is the shape parameter. The shape parameters are a

function of surface condition, grazing angle, wavelength and polarization.

2.6.4 Rayleigh Distribution. The Rayleigh distribution is a special case of the
Weibull distribution, i.e. when the Weibull scale parameter (n) equals one, Equation 27

becomes the Rayleigh density function,

flz) = ——ﬁ——emp{ ——xz———} 0<z<o00 (28)

<22 >qy <2 >y,
where < 22 >, is the average value of z2.
2.6.5 Log-Normal Distribution. The log-normal model has been found to be a

good fit of the radar clutter returns, particularly if the measured data is from complex

terrain categories. The pdf of the log-normal distribution is

P e I

0 z <0

where, 1 = E(In x), 6% = Var(ln x).
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2.7 Method of Determining the Distribution of Target and Clutter Pizel Intensities

The following procedure details how the distribution of the targets and clutter shall
be determined. First, for the distribution of the targets, the center co-ordinates of all the
targets within a target scene shall be obtained from the XPATCH- ES program. Then, an
area of 16 x 10 pixels surrounding these known locations of the targets shall be extracted
from the image. These target pixels will be reshaped and formed into a vector. If there
were six targets in a target scene the target vector for this image would be a 1 x 960
vector of target pixel intensities. Using Matlab, the target vector will be histogrammed.
Finally, curves of pdfs such as the Weibull, gamma, log-normal etc... distributions shall
be plotted over the target histogram. The distribution of the targets shall be determined
according to the best fit of these curves. A clutter pixel vector will be obtained by forming
a vector of all the pixels remaining in the image after the targets have been extracted. The
distribution of the clutter shall be determined using the same procedure detailed for the
target distribution. Figure 8 shows the curve fitting procedure of a Gaussian and Rayleigh
distributed random variable. Actual target and clutter distributions from target scenes
supplied from the XPATCH-ES program can be seen in Chapter III. The Matlab code

used to form the clutter and target pdfs is at Appendix A.

2.8 Data Generation and Rotation

The data used in this research were generated using a pre-release version of software
being developed by Loral for the Wright-Labs Target Recognition Branch (XPATCH-ES).
One complete WASAR data set, and three other polarimetric data sets were generated

and provided by the sponsor using this software. Images of a single target scene (for
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Figure 8. Example of pdf curve fitting to determine the distribution of targets and clut-
ter (a) Gaussian distributed random variable (b) Rayleigh distributed random
variable.

the complete WASAR data set) were produced for seven different view angles at three
polarizations, resulting in a total of 21 images in the WASAR data set. The seven aspect
angles ranged from —45° to 45° in 15° degree increments. A SAR image at an aspect angle
of 45° refers to an image generated from a swath of data whose center angle corresponds to
a radar target orientation of 45°. The frequency, tilt angle and resolution of the WASAR
data were the same for all data sets. The frequency of the WASAR data is 1000MHz,
the tilt angle is 45°, and the resolution is 1.5ft x 1.5ft. For this research, two data sets
were mainly used and these will be referred to as DATA Set 1, which is the complete
fully polarimetric WASAR data set consisting of 21 images, and Data Set 2, which is a
polarimetric SAR data set consisting of 3 images (HH, HV and VV) at the one aspect
angle. Figure 9 shows the 21 un-processed images of the target scene of the complete
WASAR data set, Data Set 1. Figure 38 in Chapter III shows the 3 (HH, HV and VV)

unprocessed images and ground truth map of the target scene for Data Set 2.
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Figure 9. Data Set 1 Before Rotation
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Prior to any processing and detecting, all of the images must be transformed into the
same coordinate system to ensure pixel to pixel correlation between the different aspect
angle images. This process is known as registration. The registration of the images into the
same coordinate system was done using a nearest neighbor rotation algorithm developed
by Knurr [11]. One of the unavoidable disadvantages of the rotation process is the loss
of information. This occurs because the image after rotation is smaller than the original
image. Unfortunately, the rotated image can only be as large as the pixels overlapping the
unrotated image. For example, an unrotated image at an aspect angle of —45° is 512 x
512 pixels. Rotating this to the 0° aspect plane results in an overlapping region of 363 x

363 pixels. Figure 10 shows this down-sizing of the images caused by rotation.

A

363 Pixels

Original Image —T L Rotated Image

}‘—— 512 Pixels “|

Figure 10. Overlap of Rotated Image

The second cause of information loss is due to the fact that the images are discrete
and the information between samples is not available for use in rotating the images [25].
Sumner [25] developed an interpolation rotation algorithm that compensated for this lost

information. However, this algorithm is computationally prohibitive and provides minimal
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advantage over the nearest neighbor rotation method. Accordingly, the multiple aspect
angle images of all the XPATCH-ES data sets used in this research were co-registered using

the nearest neighbor rotation method. Figure 11, shows Data Set 1 after rotation.

The XPATCH-ES program generates a ground truth map for every target scene.
The ground truth map shows the locations of targets, trees, roads and other elements of
a target scene. Figure 12 provides a legend of these typical items. The ground truth map

for Data Set 1 can be seen at Figure 13.

2.9 Summary

In this chapter we reviewed the literature relating to polarimetric processing, target
detection and clutter statistics. The two metrics, S/M and T/C, that will be used to quan-
tify the performance of the polarimetric and WASAR algorithms were defined. We then
reviewed the statistics and common distributions of clutter and targets. The polarimetric
XPATCH-ES WASAR data was also discussed. Then we developed the algorithms that
will be used to combine the polarimetric and WASAR images into the one intensity image
that will be used for target detection. The multiple aspect images were co-registered to
the 0° aspect angle using the nearest neighbor method. In Chapter IV we will apply the

algorithms developed in this chapter to the XPATCH-ES WASAR data.
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Figure 12. Legend of typical items in a target scene.

Figure 13. Ground truth map for Data Set 1 (6 targets).
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II1. Statistical Analysis of XPATCH-ES Data and Clutter Models

3.1 Introduction

In this chapter a statistical analysis, feature extraction, and a target and clutter
analysis is performed of the data used in this research. The statistical analysis involves
determining the distribution of the clutter and targets and, estimating the mean, vari-
ance and covariance matrices (polarimetric and wide angle covariance matrices). In this
work, feature extraction involves the characterization of attributes of the fully polarimetric
WASAR data that will assist in discriminating targets from clutter, such as size, power,
spatial distribution etc. The target and clutter analysis is a combination of both the feature
extraction and statistical analysis. Characteristics of targets and clutter are investigated
such as phase, 2-D correlation, ROC curves, distribution and different terrain categories.
Polarimetric and wide angle covariance matrices are estimated for the targets and the
different terrain categories, e.g. grass, trees etc. In addition, clutter models of various
statistical distributions are analyzed and generated. Generating clutter of different distri-
butions is useful for testing target detection algorithms for targets embedded in clutter of

different terrain categories.

3.2 Statistical Analysis of Data

The statistical analysis performed on the data involved the following procedures.
First, the distributions of the targets and clutter of each data set were determined. Next,
estimates of the mean and variance of the pixel intensities were computed. Then, S/M

and T/C ratios were calculated. Finally, sample estimates of the polarimetric and multiple
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angle covariance matrices for the clutter (X.), targets (¥,;) and targets + clutter (X;) were

computed.

3.2.1 Determining Target and Clutter Distributions.  The pdf of each class (target
and clutter) can be estimated by parametric or non-parametric methods. The paramet-
ric approach is less complicated than the non-parametric and involves the estimation of
parameters such as the mean and variance. Then, if the targets or clutter have a density
function that is completely characterized by a set of parameters, such as the normal and
log-normal densities, which are characterized by the mean and variance, then pdfs of the
target class and clutter can be formed by using estimates of the parameters that character-
ize the density functions. In the non-parametric approach the density function is estimated
by a small number of neighboring samples. Two common types of non-parametric estima-
tion techniques used are the Parzen density estimate and the k-nearest neighbor estimate

[5]. The parametric method of estimating the pdfs was used in this work.

3.2.1.1 Clutter Distribution. A vector of clutter pixel intensities is formed
by extracting the targets from the image using the method detailed in Section 2.7. This
vector, which contains the clutter pixels for the entire image, is histogrammed with the
aim of determining the distribution of the clutter. A parametric approach for estimating
the density of the clutter is adopted. The sample mean and variance for both data sets
are computed (refer Table 1). These values are then used to form Gaussian, Rayleigh,
log-normal and Weibull pdfs. The equations for these pdfs are at Section 2.6. The pdfs are
then plotted over the clutter histogram. Figure 14 shows the histograms of the clutter pixel

intensities for both data sets with overlaid plots of a Weibull pdf (with shape parameters
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n = 1.5 and v = 0.1) and a log-normal pdf. The log-normal pdf was the best fit to the
clutter histogram of the pixel intensities (especially for the tail of the histogram) of all
the pdfs tested. Different images (i.e. images of the same target scenes at different aspect
angles and polarizations) are tested yielding similar results. Accordingly, the distribution
of the amplitude of the clutter pixel intensities for both data sets is log-normal. A plot of
the log-normal clutter pdfs for both data sets are shown in Figure 16. Smaller areas within
the image, that contain different types of terrain, are analyzed in Section 3.4 to determine

their distribution.

Histogram of Intensity of Pixels — (cmplx hh) Histogram of Intensity of Pixels - (afit1 hh)

0.09+ Weibull shape parameters eta = 1.5, nu = 0.1 0.09 Weibull shape parameters eta = 1.5,nu =0.1
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Figure 14. Histograms of clutter pixel intensities. (a) Data Set 1, and (b) Data Set 2.

3.2.1.2 Target Distribution. The distribution of the targets within the
target scene was determined by the same procedure outlined above and using a target
template of 16 x 10 pixels around the known locations of the targets. Figure 15 shows the
histograms of the target pixels with overlaid plots of Weibull and log-normal pdfs. The
distribution of the target pixel intensities was also determined to be log-normal. Plots of

both target and clutter pdfs for both data sets are at Figure 16. The discrimination of
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targets from clutter increases (P;

o« decreases) as the distance between target and clutter

pdfs is increased. As can be seen in Figure 16, the target and clutter pdfs are almost

overlaid. Accordingly, for the un

clutter is an important problem.

processed images the detection of targets embedded in
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Figure 15. Histograms of the target pixel intensities. (a) Data Set 1, and (b) data Set 2.
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Table 1. Sample Estimates of Target and Clutter Means and STDs for both Data Sets
Mean STD
Target 0.1437 0.1450
Clutter 0.0294 0.0342
Target 0.0548 0.1001
Clutter 0.0095 0.0129

Data Set 1

Data Set 2

3.2.2 Estimates of the Mean and Standard Deviation of Pizel Intensities. The
mean of a group of pixels in a region of interest is a statistical measure of the average pixel
intensity, and the sample mean was computed using Equation 9. The standard deviation of
the data within a region of interest is a measure of fluctuations of the pixel intensities, and
the sample standard deviation was computed using Equation 10. Table 1 lists the estimates
of the standard deviation and mean, for both target and clutter classes, for the normalized
images of both data sets. These results show that both the targets’ standard deviation
and mean are significantly higher than the standard deviation and the mean of the clutter.
Hence, the mean and standard deviation appear to be good discriminating features. The
performance of the mean and the standard deviation as discriminating features shall be

tested in Section 3.3.

3.2.8 Standard Deviation to Mean (S/M) Ratios. The standard deviation to
mean ratios were calculated for each of the different polarimetric images at the different
aspect angles using estimates for the mean and standard deviation, Equations 9 and 10.
Table 2 lists the standard deviation to mean ratios for each unprocessed polarimetric image
at the various aspect angles. These results show that there is a large variation in the S/M

ratios of the images at different aspect angles and polarizations.

43




Table 2. S/M Ratios for Data Set 1

Angle (degrees)
Poles || -45[-30] -15 | 0 [+15]+30 [+ 45
HH | 4.34 | 2.86 | 2.92 | 10.36 | 5.16 | 5.38 | 3.34
HV | 2.62| 276|236 | 3.62 | 2.37 | 3.88 | 4.56
VV | 2.85|3.06| 398 6.19 | 3.29 | 5.88 | 6.07

Table 3. T/C Ratios for Data Set 1 (dB)

Angle (degrees)
Polel] -45 [ -30 | -15 | 0 | +15] 430 | +45
HH | 13.10 | 10.34 | 9.52 | 16.43 | 13.81 | 14.38 | 10.17
ov 8.91 | 9.97 | 5.05 | 10.18 | 6.37 | 11.73 | 12.61
VV [ 10.06 | 11.04 | 11.24 | 13.21 | 10.24 | 13.88 | 13.7

3.2.4 Target to Clutter (T/C) Ratios.  The target to clutter ratios were calculated
for the different polarimetric images at the different aspect angles using Equation 11 and
a target pixel window size of 16 pixels by 10 pixels. Table 3 lists these T/C ratios for
the different images of the target scene. These results combined with the S/M ratio
results (Table 2) show that target return strength is a function of angle. That is, a
target might be easily detectable at one angle or polarization and obscured at another.
The fully polarimetric WASAR enhances target detectability by offering multiple looks of
the target scene at different aspect angles and polarizations. These early results justify
further research into WASAR and reinforce the need for a radar system that provides the

capability of multiple looks at a target scene.

3.2.5 Target and Clutter Polarimetric and Wide Angle Covariance Matrices.  The
covariance matrix characterizes the statistical relationship between the random variables in
a multivariate process. For this research, two different covariance matrices will be used: the

Polarimetric Covariance Matrix (PCM); and the Wide Angle Covariance Matrix (WACM).
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The covariance matrix is defined as )}y = E{XXT}, where X is the measurement vector
and consists of either polarimetric (X=[zxy, Thy, Tuo]) o wide angle (X=[z_s50, T_300,

Z_y50...]) measurements. The sample estimate of the covariance matrix is
T
Yx = N > Xy — ) (X5 - i) (29)
k=1

where /i, is the sample mean (Equation 9). Equation 29 is a biased estimate of the covari-
ance matrix. The unbiased estimate for the covariance matrix is Xx = 'Nl——1 chvzl(X B —
)Xy — itz )T. However, for this research NV is very large, thus there is no appreciable
difference in the result between the two estimates. Hence, all the estimates of the covari-
ance matrices for this work were computed using Equation 29. The polarimetric covariance
matrices have been normalized with respect to the top left element (E {|H H|*}). This was
done so that any unusual features in the data such as a large return in the HV or VV

images could be related to the HH return, e.g E {|VV|?} = 1.5E{|HH|*}.

3.2.5.1 Polarimetric Covariance Matriz. Fstimates for the PCM for Data

Set 1 and 2, respectively, are shown below

;
( 1.00 4+ j0.00  —0.0011+ j0.0637 0.0014 + j0.1012

Yx-potarps1 = 0.0436 | _0.0011 — j0.0637  0.3194 + j0.00  0.0347 4 50.0221
0.0014 — j0.1012  0.0347 — 50.0221  .8104 + 50.00
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Table 4. Correlation coefficients between polarizations

Data set Phh—hv | Phh—ve | Phu—vo
Data Set 1 || 0.1128 | 0.1124 | 0.0808
Data Set 2 || 0.1131 | 0.1593 | 0.0453

1.00 + 50.00  0.0135 — j0.0460 —0.1008 — j0.0692
Yx-potarpsz = 0.05321 00135+ j0.0460  0.1797 + j0.00  0.0124 — j0.0079

—0.1008 + 70.1012 0.0124 + 70.0079 .5893 + 70.00

Referring to both covariance matrices the off diagonal terms are relatively smaller than
the diagonal elements. This is in line with published results. Novak [15], set the off
diagonal elements to zero for a Gaussian polarimetric clutter model in the development
of the polarimetric whitening filter after analyzing polarimetric SAR clutter. From the
covariance matrix the correlation between the different polarizations can be calculated
using the following equation

C(5,9)
C(4,1).C(5,9)

(30)

Pij

where C(%,7) is the ¢, jth element of the covariance matrix. The correlation between
the HH and HV returns and the other polarization combinations for both data sets were
computed from Equation 30 and are listed in Table 4. These results show a small correlation
exists between the different polarizations. This result is significant for developing Gaussian
polarimetric clutter models. In a Gaussian process uncorrelated random variables are
independant. Accordingly, three independant Gaussian clutter generators can effectively
simulate HH, HV and VV clutter. More details on clutter models shall be discussed in

Section 3.5.
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The PCMs estimated above were computed using the entire HH, HV and VV images,
and these calculations of the PCM (using the whole image targets and clutter) will be used
to combine the polarimetric images using the PWF. PCMs can also be formed to analyze
the targets and different terrain categories such as trees and ground clutter. A polarimetric
covariance analysis of targets and clutter could reveal polarimetric features in the data that
can be used to discriminate targets from clutter false alarms. Figure 17 shows images of a

target (close up), trees and ground clutter.

(a.) (b.) | (c.)

Figure 17. Images of Specific Terrain Features: a) Target, b) Trees, and ¢) Grass

The PCMs for targets, trees and grass were computed using Equation 29 and by
using the same image segments in the HH, HV and VV images. The target polarization
covariance matrix was computed by forming a target vector of all five targets for each
polarization. The —45° HH, HV and VV images of WASAR Data Set 1 were used to
compute the target, tree and ground clutter PCMs. Other polarimetric sets (different

aspect angles) within Data Set 1 were tested yielding similar results. The target, tree and
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ground clutter PCMs are presented below.

1.00 + 50.00 0.1120 + j0.1420 0.2447 4 70.1333

YX-polarTarget = 0.68381 0.1120 — j0.1420 0.1445+ 50.00  0.0165 4 50.0057

| 0.2447 - j0.1333 0.0165 — j0.0057 4423 + 50.00

1.00 + 70.00 0.0125 + 70.0899 -0.0331 4 50.1379

Ex-potarTrees = 0.05721 0.0125 — j0.0899  0.4360 + j0.00  0.0582 + 50.0105

—0.0331 — 0.1379 0.0582 — 50.0105 .9730 4 50.00

( 1.00 4+ §0.00  0.0089 — j0.0698 0.2399 — j0.1846

Yx—potarGrouna = 0.0069 | 0,0089 + j0.0698 0.3243 + j0.00  0.0345 — j0.0170

0.2399 + j0.1846 0.0345+ j0.0170  .8398 4 70.00

The polarimetric covariance parameters of the man made targets are considerably
different from those of trees and ground clutter. The most obvious parameter difference in
the polarization-covariance matrix between targets and clutter is the E {| H H|*} parameter.
The targets E {|H H|?} is one order of magnitude larger than trees and two orders of
magnitude larger than ground clutter. Accordingly, as is expected, the detection of targets
surrounded by trees is considerably more difficult than detecting a target in ground clutter.
For a single image F {|H H|*} is the variance. This is the square of the standard deviation.
In Section 3.2.2 the standard deviation of targets was shown to be significantly larger for

targets than clutter. The PCM statistically reinforces this result.
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Table 5. Correlation coefficients between polarizations for Targets, Trees and Grass
Data set Phh—ho Phh—vvy Pho—vy
Targets || 0.4740 | 0.4190 | 0.0687
Trees 0.1375 | 0.1438 | 0.0908
Grass 0.1236 | 0.3304 | 0.0737

Another interesting observation regarding the target and clutter PCMs is the overall
structure of the matrices. The target PCM has significant values for all parameters in the
covariance matrix. In contrast, the off diagonal elements of the clutter PCMs (both tree
and ground clutter) are almost zero. The clutter PCMs have a definite structure. (As

previously stated, this result is in line with published results.)

The final observation regarding the PCM parameters of targets and clutter, is that the
HV return (E {|HV|?}) is lower for targets than for clutteri.e. E{|HV|*} = 0.14E {|H H|*}.
Other polarimetric data sets were analyzed yielding the same result. This low HV return

is probably due to the physical structure of the man made targets.

The polarimetric correlation coefficients for targets, trees and grass were computed
from their respective PCMs using Equation 30. The results are listed in Table 5. These
results show that the HV and the VV returns for targets, trees and grass are uncorrelated.
Further, the correlation coefficient for the HH-HV returns is higher for targets than both
grass and trees. Accordingly, the HH-HV correlation coefficient could be a suitable feature
to discriminate targets from clutter false alarms. This polarimetric discriminating feature

shall be investigated in Section 3.3.

3.2.5.2 Wide Angle Covariance Matriz (WACM). An estimate for the

sample WACM was computed from Equation 30, where the measurement vector X was
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formed from measurements taken at different aspect angles (X=[2_450, Z_300, T_150...])-

The WACM of the entire image (computed using the HH data set) is shown below

0.8996 0.0088 0.0290 0.0211 0.0057 0.0047 0.0089
0.0088 0.8565 0.0127 0.0101 0.0067 0.0075 0.0113
0.0290 0.0127 0.8885 0.0123 0.0102 0.0077 0.0064
Lx-wacu = 0.04361 00211 0.0101 0.0123 1.0000 0.0228 0.0117 0.0031
0.0057 0.0067 0.0102 0.0228 0.9222 0.0369 0.0155

0.0047 0.0075 0.0077 0.0117 0.0369 0.9620 0.0014

0.0089 0.0113 0.0064 0.0031 0.0155 0.0014 0.8289

The WACM is a complex matrix and for all of the WASAR algorithms the complex
form of the WACM was used, however for display purposes only the magnitude of the
WACM is shown. The WACM has been normalized to the zero degree aspect return.
The most significant feature of the angle covariance matrix, is that it is almost a diagonal
matrix. That is, the off diagonal elements in all directions are almost zero (e.g. 0.0088,
0.0290 etc.). The HV and VV WASAR sets within Data Set 1 were tested yielding similar
results. The correlation between angles was computed using Equation 30, and the results

are listed in Table 6.

WACMs were computed for targets, trees and grass and the results are shown below.
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Table 6. Correlation coefficients between aspect angles for Clutter plus targets (whole

image)

Angle

—45°

-30°

—15°

Angle
00

+15°

+30°

+45°

~-45°
-30°
—15°
00
+15°
+30°
+45°

1
0.0100
0.0324
0.0222
0.0062
0.0050
0.0104

0.0100
1
0.0145
0.0109
0.0075
0.0083
0.0134

0.0324
0.0145
1
0.0130
0.0113
0.0083
0.0074

0.0222
0.0109
0.0130
1
0.0237
0.0119
0.0034

0.0062
0.0075
0.0113
0.237
1
0.0391
0.0178

0.0050
0.0083
0.0083
0.0119
0.0391
1
0.0016

0.0104

0.0134

0.0074

0.0034

0.0178

0.0016
1

2X—WACMTm‘gets

EX—-WACMTrees =

EX—WACMGrass

= 1.5684«

0.0636 *

0.0062 *

[ 0.4360
0.0187
0.0921
0.0528
0.0536
0.0483

| 0.0241

[ 0.9002
0.0108
0.0542
0.0062
0.0126
0.0259
| 0.0288

[ 1.1042 0.0
0.0270 1.0
0.0281 0.0
0.0011 0.0
0.0220
0.0231
| 0.0430 0.0

0.0108
1.0791
0.0420
0.0239
0.0280
0.0520
0.0151

0.0219
0.0215

0.0187 0.0921
0.2433 0.0543
0.0543 0.2126
0.0361 0.0422
0.0413 0.0621
0.0258 0.0167
0.0487 0.0121

270 0.0281
010 0.0184
184 0.9496
203 0.0168
0.0105
0.0181
100 0.0117

0.0542
0.0420
1.0248
0.0149
0.0208
0.0248
0.0253

0.0528
0.0361
0.0422
1.0000
0.1165
0.0817
0.0492

0.0062
0.0239
0.0149
1.0000
0.0289
0.0098
0.0213

0.0126
0.0280
0.0208
0.0289
0.9990
0.0189
0.0371

0.0011 0.0220
0.0203 0.0219
0.0168 0.0105
1.0000 0.0219
0.0219 0.9706
0.0214 0.0259
0.0160 0.0257

0.0536 0.0483
0.0413 0.0258
0.0621 0.0167
0.1165 0.0817
0.5482 0.1811
0.1811 0.5708
0.0637 0.0434

0.0259
0.0520
0.0248
0.0098
0.0189
1.0105
0.0305

0.0231
0.0215
0.0181
0.0214
0.0259
1.0059
0.0351

0.0241
0.0487
0.0121
0.0492
0.0637
0.0434
0.2191

0.0288 |
0.0151
0.0253
0.0213
0.0371
0.0305
0.9594 |

0.0430 |
0.0100
0.0117
0.0160
0.0257
0.0351
1.0398 |

Referring to the WACMs of the targets, trees and grass the following observations

are made. First, the E {|X¢.|?} (variance) of the targets is significantly larger for man
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made targets than for trees and grass. This discriminating feature was also observed in
the PCM analysis. Second, the return at different aspect angles relative to the 0° aspect
angle (diagonal elements of WACM) varies considerably for targets, whereas for all clutter
the returns at different aspect angles remained constant (at approximately one). An exam-
ination of the diagonals of each of the WACMs reveals that for trees and ground clutter,
the diagonal elements are all approximately the same, whereas the diagonal elements of the
target WACM vary. In both the trees and the grass the return at different aspect angles is
the same. Figure 18 is a plot of the relative return of targets, trees and grass at different
aspect angles. This result proves the assumption that clutter is invariant to changes in
aspect angle. In other words, clutter has a constant return over different aspect angles,
however, targets (due to their different physical properties) produce a varying return for
different aspect angles. A tree looks the same from any angle, however, a target looks

considerably different at even small aspect angle changes (i.e 15°).

1.2r

Relative Return
o
~
T

04r
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0.2

~50 -40 -30 -20 -1 0 10 20 30 40 50

0
Aspect Angle

Figure 18. Plot of Relative Return versus Aspect Angle for Targets, Trees and Grass
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Table 7. Correlation coefficients between aspect angles for Targets only

Angle Angle
—-45° =30° -—15° 0° +15°  +430°  +45°
—45° 1 0.057 0.303 0.080 0.110 0.100 0.078
—30° | 0.057 1 0.239 0.073 0.113 0.069 0.211
—-15° | 0.303 0.239 1 0.091 0.182 0.048 0.056
0° 0.080 0.073 0.091 1 0.157 0.108 0.105
4+15° { 0.110 0.113 0.182 0.157 1 0.324 0.184
4+30° | 0.097 0.069 0.048 0.108 0.324 1 0.1223
+45° | 0.078 0.211 0.056 0.105 0.184 0.123 1

Table 8. Correlation coefficients between aspect angles for Trees only

Angle Angle
—45° -30° —15° 0° +15°  430° +45°
—45° 1 0.011 0.056 0.007 0.013 0.027 0.031
—30° | 0.011 1 0.040 0.023 0.027 0.050 0.015
—15° | 0.056 0.040 1 0.015 0.021 0.024 0.026
0° 0.007 0.023 0.015 1 0.029 0.010 0.022
+15° | 0.013 0.027 0.021 0.030 1 0.019 0.038
4+30° | 0.027 0.050 0.024 0.010 0.019 1 0.031
+45° | 0.031 0.015 0.026 0.022 0.038 0.031 1

The correlation between aspect angles for targets, trees and grass were computed

and are listed in Tables 7, 8 and 9.

From these it can be seen that the clutter returns

(both trees and grass) are uncorrelated between the different aspect angles, whereas the

targets are slightly correlated between aspect angles.

Table 9. Correlation coefficients between aspect angles for Grass only

Angle Angle
—-45° -30° —15° 0° +15°  430° 445°
—45° 1 0.025 0.027 0.001 0.021 0.022 0.040
—30° | 0.026 1 0.019 0.020 0.022 0.021 0.009
—15° | 0.027 0.019 1 0.017 0.011 0.019 0.012
0° 0.001 0.020 0.017 1 0.022 0.021 0.016
+15° | 0.021 0.022 0.011 0.022 1 0.026 0.026
+30° | 0.022 0.021 0.019 0.021 0.026 1 0.034
+45° | 0.040 0.009 0.012 0.016 0.026 0.034 1
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3.2.6 Summary of Statistical Analysis. The statistical analysis performed on
the data highlighted many discriminating features that would assist in the separation of
targets from clutter. From the limited amount of data processed the following conclusions
appear to hold. The standard deviation was found to be the most promising discriminating
feature. It was shown through a direct computation of the standard deviation, that a

target’s standard deviation was significantly larger than the standard deviation for clutter

(refer Table 1).

Further, the large difference between clutter and a target’s standard deviation was
highlighted in the analysis of polarimetric and wide angle covariance matrices. The dis-
tribution of targets and clutter for both data sets was shown to be log-normal. The
polarimetric covariance parameters of the targets were shown to be different to that of
clutter. The form of the polarimetric covariance matrix of the XPATCH-ES data was in
line with published results [15]. The wide angle covariance analysis showed that the rela-
tive return strength for clutter was constant at different aspect angles, whereas the returns
from the targets varied considerably at different aspect angles. That is, a tree looks the

same at different aspect angles, however, a target looks considerably different.

3.8 Feature Extraction

Feature extraction or feature selection is generally used in target recognition systems
and is a process of mapping the original measurements into more effective features. The
focus of this research is target detection. Notwithstanding, to discriminate targets from
clutter, attributes of the fully polarimetric WASAR data that will effectively separate the

two classes in the target detection problem must be investigated and exploited. Typical
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attributes include size, shape, power, polarimetric properties and spatial distribution [4].
To select a suitable discriminating feature each feature is tested on the data to see if it
effectively separates targets from clutter false alarms. The feature may be a good one if it

separates the two classes.

To discriminate is a front end process, i.e. it is one of the first steps involved in a
target detection or target recognition system. The ability to discriminate will significantly
reduce the number of clutter false alarms. Figure 19 is a block diagram of the WASAR

target detection system developed for this research. The system comprises four stages:

Target Detection

d
Input COARSE and
IMAGE IMAGE Classification
- REGISTRATION » COMBINATION DETECTION »PISCRIMINATOR —
Fully polarimetric (simple threshold
WASAR Images CFAR efc)
(hh,hv,wv) X T :
multiple aspect angles (PWF, PMF etc) Reject Reject
clutter clutter
false-alarms false-alarms

Figure 19. Block diagram of fully polarimetric WARSAR target detection system

1) image registration, 2) image combination, 3) coarse detection, and 4) discrimination.
At the input there are 21 images of different polarizations and aspect angles. The first
stage registers all the images to the one aspect angle. A full description of this stage
was provided in Chapter II. The second stage combines the polarimetric images into the
one image for coarse target detection and discrimination. The polarimetric and WASAR
algorithms used to combine the registered images were derived in Chapter II. The results
of detecting an image formed from different combinations of combining polarimetric and
WASAR images are presented in Chapter IV. Since the function of the discriminator is to
exploit characteristics of the data a description of its operation and some of the features of

the registered images investigated is presented in this data analysis chapter. Specific results
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of combining different combinations of polarizations and WASAR images are provided in

Chapter IV.

3.8.1 Discriminator and Specific Features Investigated. ~ The discriminator exam-
ines smaller regions of the registered, combined and detected image. The coarse detector
isolates possible target locations and rejects lower level clutter false alarms. These smaller
regions are then analyzed with respect to a number of features in order to separate the
targets from the clutter. The main purpose of the discriminator, in this research, is as
another method of quantifying the improvements of combining either the polarimetric or
WASAR images into the one image for target detection purposes. Accordingly, the fea-
tures investigated had to satisfy the following two goals: 1) clearly separate target and
clutter classes, and 2) be easily and quickly computed. The features investigated included
the mean, the standard deviation,the 2-Dimensional correlation co-efficient and the HH-
HV correlation. The discriminating attributes of the mean and the standard deviation
features were outlined in Section 3.2.2, where it was shown that both the mean and the

standard deviation were larger for targets than clutter.

In Section 3.2.5.1 it was shown by an analysis of the polarimetric covariance matrix
that the HH-HV correlation coefficient was larger for targets than clutter. The HH-HV
correlation coefficient (ppn_p, ) Wwas computed by forming a 2 x 2 covariance matrix of all the
segmented sub-images and pyn_p, was calculated using Equation 30. Figure 20 illustrates

the ppr_n, standard deviation discriminator.

The 2-D correlation coefficient is the measure of correlation of a test target with a

region of the target scene under test. This feature was computed by forming a binary image

56




HH

Compute Feature 2

p
hh-hv

Targets
>

HV Discriminator

Clutter
——

Compute Feature 1
STD

HH

Figure 20. Block diagram of psj_s, standard deviation discriminator

of the original image and cross correlating the target with similar sized non-overlapping
windows across the entire digital image. This process of cross correlating the image of the
target over regions of interest is called matched filtering. In a more complex discriminator
or target recognition system, the target would be rotated through all possible angles and
cross correlated with the test image. The process of rotating the target and cross correlating
with the image was avoided by making the test target a 16 x 16 matrix of ones. Thus,
a 16 x 10 pixel target at any roatation angle should be detected using this larger target
template. The main purpose of the 2-D correlation coefficient feature is to detect pixel
clusters similar to that of the test target in order to separate targets and clutter false
alarms. In this instance the focus is on target detection not recognition. The binary image
was formed by thresholding the normalized image at the mean pixel intensity plus one
standard deviation (0.0666) and, assigning all values below the threshold at 0 and those
values above the threshold to 1. Figure 21 shows binary images of the HH image at an

aspect angle of -45° and a close up binary image of the target used as the target test
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vector for feature extraction. The size of the test target, in the data analyzed, is 16 pixels

- uil _
Test Target g‘e‘ﬁ& W ’ . Target .
o oyl -

(a) (b)

Figure 21. Binary images of: a) HH -45°, and b) Target used for testing in feature
extraction
long and 10 pixels wide, however, any size window can be used in the discriminator. The
choice of window size depends on the size and shape of the targets being detected. Many
different window sizes were tested and it was found that a smaller window, 6 x 6 was the
best window size for the 2-D correlation coefficient (detect square pixel clusters), however,
the standard deviation feature gave better results with larger window sizes. After testing
various window sizes an engineering tradeoff between the two features was reached and a
window size of 12 x 8 pixels was selected. The process of using a 12 x 8 matrix of ones
(i.e. the correlator was searching for solid squares within the target scene) is a simplified
version of using the fractal dimensions of an object. The fractal dimension of the pixels
within a region of interest is an ideal feature that provides information about the spatial

distribution of the brightest scatters of the detected objects. Forming a binary image is
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the first step in computing the fractal dimension of regions under test. The computation

of the fractal dimension was begun but this task is beyond the scope of this research.

As previously stated, the method of determining a good feature is to test it on the
data to see if it effectively separates targets from clutter false alarms. The results are
displayed on a plot of one feature against another. A target training vector is tested and
other possible target regions that are close to the center of the target training vector, in

feature space, are designated targets. Figure 22 [4] demonstrates this concept.

A
Clutter

Separation in
eature space

Feature 2

eregion | Threshold

Feature 1

Figure 22. Diagram of simple Discriminator

The test target vector used to locate the position of the target cluster in feature space
is shown in Figure 23. The image consists of a target in a grassy field (ground clutter) and
one tree. The image was segmented into non-overlapping windows of 12 x 8 pixels and
for each window the mean and standard deviation were computed. The plot of the mean
versus the standard deviation (refer Figure 23(b)) shows that the grass, tree and target
were successfully separated. On the plot the ‘*” indicates the mean and variance of the

region being tested, the ‘x’ shows the actual standard deviation and mean of the target,
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the ‘+’ shows the actual mean and standard deviation of the tree, and the ‘o’ (obscured)
shows the actual mean and standard deviation of the ground clutter. The other feature

pair combinations were tested on this same sub-image with similar promising results i.e.

targets were clearly discriminated from clutter false alarms.
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o6k Test Target X |
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w CLUTTER |
I
- ]
02 | Threshold
. |
01} 1
; '\
*‘\Ground clutter
0 , . , , A
0 0.1 0.2 0.3 0.4 0.5 0.6

L% Feature 1 - Mean
(2) (b)
Figure 23. Discrimination of targets and clutter using the standard deviation and mean

features. a) Image of a target in clutter, b) Plot of Mean vs STD

The results of testing the data against the mean, standard deviation, the 2-D corre-
lation coefficient and the HH-HV correlation coefficient features on the entire target scene
are shown in Figure 24. The HH at an aspect angle of -45° was used to test for the best
pair of discriminating features. For all features, targets have higher values than clutter,
i.e. a target has a higher mean, standard deviation and correlation coefficient than clutter.

Accordingly, in plots of one feature verses another, targets are located in the upper right
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quadrant of the graph and most clutter values should appear below the targets (lower left

section of graph).
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Feature plots (a) STD Vs Mean, (b) 2-D Corr Coefficient Vs Mean, (c) 2-D

Corr Coefficient Vs STD , and (d) HH-HV Corr Coefficient Vs STD.

The image used for testing contains five targets (refer Figure 13). Referring to Fig-

ure 24, the best pair of discriminating features is the standard deviation and the 2-D

correlation coefficient. The mean feature combined with either of the standard deviation,

the correlation coefficient, or the HH-HV correlation coefficient does not significantly sep-

arate targets from clutter false alarms. However, the main advantage of this set of features
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is that they are easily and quickly calculated. The best result for testing of the HH-HV
correlation coeflicient feature with the other features was with the standard deviation fea-
ture (Figure 24 (d)). This combination did separate targets (upper right corner) from
clutter false alarms (lower left) but not as succesfully as the standard deviation and the
2-D correlation pair. The 2-D correlation coefficient shows that future work in computing
fractal dimensions for the WASAR regions of interest shows promise. The discriminator
in this research will use both: the standard deviation-correlation feature pair, for their
performance; and the standard deviation-mean feature pair, for their ease of computation.

Full results of testing the combined polarimetric and WASAR images are presented in

Chapter IV.

3.4 Target and Clutter Analysis

In this section the WASAR data is further analyzed in order to extract any other
features or characteristics that will enable targets and clutter to be differentiated. First,
polar plots are plotted of the target and clutter pixels to investigate the phase and the
magnitude of the raw data for these two classes. Next, different types of clutter is investi-
gated with respect to distribution, and polar plots. A 2-D correlation analysis is performed
on targets, trees and grass to investigate their spatial distribution. Finally, ROC curves
are plotted of the unprocessed images to determine relative probabilities of detection and

false alarm for the different aspect angles and polarizations.

3.4.1 Polar Plots of Targets and Clutter. The WASAR data are complex. That

is, each image pixel can be represented as a magnitude and a phase. A simple threshold
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detector distinguishes a pixel as either a target class or a clutter class depending on the
magnitude of the pixel under test. If the magnitude of the pixel exceeds the threshold a
target is assumed. In this type of detector the phase information is ignored. In this section

an analysis of target and clutter phase information is performed.

The phase analysis simply involves the direct polar plot of the magnitude and phase
of target and clutter pixels. Target and clutter pixels were separated as described in
Section 2.7. Figure 25 shows polar plots of the target pixels of Data Set 1 for all aspect
angles and polarizations, and Figure 26 shows the polar plot for clutter. A polar plot of

the clutter pixels is at Figure 26.

A comparison of the polar plots of clutter and targets shows that clutter pixels
have widely varying (random) magnitude and phase, producing a circular polar plot. In
contrast, the majority of target pixels have a larger magnitude and a smaller variance of
phase angles. For example, the polar plot of the target pixels of the HH -45° aspect angle
image shows that the phase angle of most of the pixels is approximateley 45°. Other good
examples of this observation include the VV 4+15° image and the +45° VV and HV polar
plots. This phase discriminating feature was investigated, however, early results did not

provide any significant disciminating performance.

3.4.2 Target and Terrain Clutter Analysis.  In this section an analysis of different
types of terrain within the target scene of Data Set 1 is presented. Targets, trees and
ground clutter (grass) are analyzed to determine their distribution and phase profile. In
Section 3.2.1 it was shown that the overall distribution of clutter and targets is log-normal.

However, within a large target scene there can be many different types of terrain. Clutter
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Figure 25. Polar Plots of Targets in Data Set 1
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270

Figure 26. Polar plot of Clutter Pixels

from different terrain has different statistics. A polarimetric-covariance and wide angle-
covariance analysis performed in Section 3.2.5 showed that the covariance parameters of
the man made targets were different to that of clutter. Using these same regions of targets,
trees and grass, the pixels were histogrammed to determine their distribution and polar
plots were taken to investigate their phase profile. Figure 27 shows images of the targets
and clutter along with pixel intensity histograms and polar plots. This figure illustrates
that the targets and trees have a log-normal distribution and the ground clutter is Rayleigh
distributed. The polar plots show that both trees and grass have a uniform phase profile,

whereas targets have a non-uniform phase profile.

3.4.8 2-D Correlation analysis. A 2-D correlation analysis of targets, trees and
ground clutter was performed to investigate their spatial distribution. Figures 28 and 29

show images, 2-D mesh plots and surface plots of the 2-D autocorrelation of targets, trees
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and ground clutter. Referring to these figures, the targets have a unique 2-D correlation

profile when compared to those of trees and ground clutter.

3.4.4 ROC Curves. As discussed in Section 2.5, ROC curves are plots of proba-
bility of detection (Pp) versus proabability of false alarm Pj,. They are used to quantify
the performance of a detector. A plot of ROC curves of the unprocesed images for the dif-
ferent aspect angles and polarizations will show those images that have a high probability
of detection and a low probability of false alarm. The further the ROC curve is above the
chance line indicates the more likely targets in this image are to be detected. The ROC
curves were computed by the following procedure. First, all the images were normalized
so that the threshold level for the pixel intensities ranged from zero to one for all images.
Next, target and clutter pixels in each image were extracted and directly histogrammed.
The bins of the histograms represent the threshold level. For example, if there were 100 his-
togram bins, the bins would increment in threshold steps of 0.01 and the value in the target
histogram vector would contain all the target pixel intensities within a particular threshold
range. The target and clutter histograms were normalized such that they summed to one
(i.e. discrete pdf). The probability of detection was computed by summing the bins of
the target histogram from the threshold level to the end of the target histogram vector
(Pp = chvhrsh Targ, where Targ is the vector containing the histogramed target pixel in-
tensities). Similarly, the probability of false alarm was computed by summing the clutter
histogram vector from the threshold to the end of the clutter vector (Ps, = Z%Vhrsh Clut,

where Clut is the vector containing the histogramed clutter pixel intensities).
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Figure 28. 2-D Correlation analysis for: a) Target, b) Target plus Tree, ¢) Trees, and d)
Ground Clutter.
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(z; A Single Tree (a. 2-Dorre1ation) (a. Surface plot)
Figure 29. 2-D Correlation analysis for a single tree

Plots of ROC curves for all aspect angles and polarizations for Data Set 1 are at
Figure 30. These plots show that the detectability of targets varies considerably at different
aspect angles and polarizations. For example, the ROC curve of the HH image at aspect
angle 0° is extremely good (Pp=0.8 for a P;, of 0.2), whereas, the ROC curve of the HV
image at aspect angle -15° is just above the chance line. These results reinforce the T/C
results (refer Table 3) for the unprocessed images. That is, the largest T/C ratio was the
HH image at an aspect angle of 0° and this image also provided the best ROC curve result.
Similarly, the lowest T/C ratio was for the HV image at an aspect angle of -15° and this
image also gave the worst ROC curve result. Accordingly, the T/C metric and plots of
ROC curves appear to be good metrics for assessing the improvement in target detection
performance for the polarimetric and multi aspect angle algorithms. In addition, the T/C
ratios and ROC results justify the requirement for a target detection system that provides
the capability of multiple looks at a target scene in a single flyover. In Chapter IV , the
results of detecting the combined polarimetric and WASAR images are presented. One of
the methods used to quantify the improvement of the polarimetric and WASAR combining

algorithms is a plot of the ROC curve of the combined (polarimetric or WASAR) image.
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For comparison with the unprocessed images, the ROC curve of the HH image at aspect
angle of +15°, which has a typical ROC curve response, shall be used as a benchmark to

show the improvement of each algorithm to the unprocessed images.

3.5 Clutter Models

The aim of generating clutter models with different statistical distributions is to ob-
tain a thorough understanding of clutter phenomenology, and use the generated clutter
to test target detection algorithims under different terrain conditions. As discussed previ-
ously, clutter from different terrain and grazing angles has different statistics. For example,
the log-normal distribution has been found to be a good fit for sea clutter and land clutter
at low grazing angles < 5°, the Weibull clutter model is used for grazing angles between 1
and 30 degrees [20], and the Rayleigh model is used for clutter whose amplitude probability
distribution encompass a limited dynamic range (i.e. bare ground surfaces, agricultural

fields and dense forest canopies).

In this section Gaussian, Rayleigh and Weibull clutter models will be developed and
generated. Where posssible, the generated clutter will be compared to SAR clutter ob-
tained from the XPATCH-ES program. For demonstration purposes the generated clutter

will be added to clean polarimeteric images (HH, HV and VV) of a T-72 tank.

3.5.1 Clutter Model Theory. High resolution SAR clutter can be statistically
modelled by the product model [15, 12]. Using the product model, complex clutter samples
are represented by the following equation

Y = X(I+35Q) (31)
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Figure 30. Plots of ROC curves for Data Set 1
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where Y is the complex clutter sample, X is the texture or intensity component and
(I+37Q) is the complex speckle component. The texture or intensity component X, which
characterizes the distribution of the clutter is typically gamma, Weibull or log-normal
distributed. The I + jQ is a zero mean complex Gaussian random variable representing

the speckle component.

3.5.1.1 Gaussian Clutter Model Theory. A complex Gaussian clutter model
is one in which the Y of Equation 31 is complex Gaussian. Fully polarimetric complex

Gaussian clutter is defined as

HH HH; +jHH,
Y = | gV | =| HV,+jHV, |- (32)
4% VV; +jVV,

The joint pdf of the complex Gaussian random variable is defined as

1

fY) = e {-Yf iy} (33)

where }:;1 is the polarization covariance matrix defined at Equation 29. For a Gaussian
polarimetric clutter model Novak [15] has shown that the covariance matrix simplifies to

the form shown in Equation 3.

3.5.2 Gaussian Clutter Generator.  The first clutter model developed and gener-
ated is a Gaussian amplitude clutter generator. Gaussian distributed clutter was generated

and added to the HH, HV and VV polarimetric images of a T-72 tank. SAR clutter is
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not usually Gaussian distributed, however, a Gaussian clutter model is useful for testing

different types of detectors and polarimetric algorithims.

Uncorrelated Gaussian clutter was generated by simply forming a 512 x 512 matrix
of zero mean gaussian random variables with variance of 0., in Matlab. Where the variance
or the power of the noise is a variable selected by the operator. For demonstration purposes
the noise variance was selected so as to hide the T-72 tank. A matlab function SNR.m
was written (enclosed at Appendix A) that computes the average signal power of the
pixel intensities of the T-72 image and determines the required noise variance for a given
signal to noise ratio. For example, using just the target pixels of the T-72 HH image,
and a desired signal to noise ratio of -9 dB, a noise variance of 0.0972 was computed.
This noise variance value was used to generate the Gaussian noise which was then added
to the T-72 polarimetric images. In Section 3.2.5 it was shown, through an analysis of
the polarimetric covariance matrix, that the correlation between polarizations was small
(refer Table 4). Further, for a Gaussian random process, uncorrelated random variables
are independant. Accordingly, three independant Gaussian noise generators were used
to generate polarimetric clutter. Figure 31 shows the three clean polarimetric images of
the T-72 tank and Figure 32 shows the three polarimetric images with zero mean, 0.0972
variance, additive Gaussian noise. The Matlab code for the Gaussian clutter generator is

at Appendix A (gauss-clut.m).

3.5.3 Rayleigh Clutter Generator. Complex Gaussian clutter has a Rayleigh
amplitude probability distribution [19]. To generate complex Gaussian clutter is a simple

case of combining two Gaussian random variables (X and Y') with mean of y and standard
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T72 HV - Clean Image

T72 HH - Clean Image T72 VWV - Clean Image

g.'
;%

g

(a) (b) (c)
Figure 31. Clean Images of T-72 Tank (a) HH, (b) VV (c) VH

T72 HV - Noisy Image

(b)
Figure 32. Noisy Images of T-72 Tank (a) HH, (b) VV (c) VH.
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deviation of o by the following equation

z = z+7jy. (34)

Thus, the amplitude of z, which is Rayleigh distributed, is

z = a?tyl (35)

To accurately model SAR clutter the generated clutter must be as close an approximation
as possible to actual SAR clutter. To this end, generated clutter will be a good approx-
imation of SAR clutter if it exhibits similar statistical properties as the SAR clutter. A
statistical analysis of XPATCH-ES SAR clutter scenes will provide information describing
the prominent statistical properties of the clutter data that can be used in the clutter gen-
erators. A simple statistical analysis involves determining the clutters’ distribution and
estimates of its various moments, such as the sample mean, sample standard deviation and
the polarimetric covariance matrix. To summarize, a clutter model will be a good fit for
SAR clutter if the model parameters, such as the distribution, mean and variance are set

to those values obtained from a statistical analysis of actual SAR clutter scenes.

3.5.8.1 Statistical Analysis of XPATCH-ES Clutter. Data file “gs-f1000-
000-d45th”, obtained from XPATCH-ES, consists purely of simple ground clutter (i-e. no
targets or changes in terrain) . The image of this clutter scene is shown in Figure 34(a).
A statistical analysis of this data was performed to obtain the clutters distribution, mean.
standard deviation and covariance matrix. First, the distribution of the clutter scene was

established. This was done by the same method outlined in Section 2.7. Figure 33 shows
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a histogram plot of the pixel intensities with an overlaid plot of a Rayleigh pdf. As can be
seen from Figure 33(a) the pixels are approximately Rayleigh distributed. Accordingly, this

XPATCH-ES clutter scene can be used as benchmark for the Rayleigh clutter generator.
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Figure 33. Histograms of pixel intensities for: (a) XPATCH-ES Clutter, and (b) Gener-
ated Clutter.
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The sample mean and standard deviation of the XPATCH-ES clutter pixel intensities
were calculated to be y=8.1284 x 10~* and o = 0.0833 respectively. The polarimetric

covariance matrix of the clutter was computed to be

( 1.00 + 50.00 0.0341 — 50.0867 0.2468 — j0.1821

YpoarxPaTcH-ESClt = 0.069 | 00341 4 j0.0867  0.2790 + 50.00  0.0271 4 50.0128

0.2468 + 70.1821 0.0271 — 50.0128  .7464 + 50.00

The correlation between the HH and HV returns and the other polarizations com-
binations for the XPATCH-ES clutter were computed using Equation 30 and the results
are listed in Table 10. Rayleigh clutter was formed by creating two 512 x 512 matrices of

Gaussian distributed zero mean 0.069 variance random variables in Matlab, and combin-

76




Table 10. Correlation coefficients between polarizations XPATCH-ES Clutter

Phh—hv Prh—vy Phv—vv
0.1763 | 0.3551 | 0.0656

ing them according to Equation 35. The Matlab code of the Rayleigh clutter generator
is at Appendix A (rayl-clutt.m). Figure 34 shows images of the generated Rayleigh dis-
tributed clutter and the XPATCH-ES clutter. A comparison of the two images shows that
the XPATCH-ES image has more pixel intensity variation than the “smoother” generated
clutter image. The main difference between the two images is that the XPATCH-ES clutter
is more correlated than the uncorrelated generated clutter. The pixel to pixel correlation
coefficient was computed to determine the amount of spatial correlation that exists with the
ground clutter. The sample correlation coefficient quantifies the correlation or relationship
between two random variables. Mathematically it is defined as

_ it (X — pa)(Yi — y)
\/Z?:I(Xi ~ piz)? 3 (Vi = oy )?

Pcy (36)

where (X;,Y;.... X,, Y,) are the n pairs of observations, and p, and u, are the means
of the two data sets. To calculate the correlation between neighboring pixels a Matlab
function (pix-corr.m enclosed at Apendix A) was written that calculates the correlation
coefficients between pixels for different sized windows within an image. For example, a 10
x 10 area within an image could be analysed to determine how correlated a pixel is with
its immediate neighbours. Within the window under investigation pg is the correlation
coefficient of a pixel and its immediate right neighbour, p; o is the correlation coefficient of
a pixel and the pixel directly below it, and p; ; is the correlation coefficient of a pixel and

the pixel down one and across to its right (diagonal element). A 10 x 10 window produces
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a 5 x 5 matrix of correlation coefficiets. A typical result using a 10 x 10 window from the

data file “gsf1000d45rhh” SAR image is

Po,0

P10

P50

Using a 20 x 20 window the pixel to pixel correlation

Po1

P11

Po,s

P15

P55

1.000 0.5227

0.5295 0.3115

0.1397 0.1168

0.0729 0.0732

0.0811 0.0746

0.0719

0.0609

0.0187

—0.0138

—0.0300

—0.0235 -—-0.0463

—0.0324 -0.0907

—-0.0752 —0.0950

—0.0448 —0.0018

—0.0274 0.0176

was recalculated and the

correlation coefficients for the left-right, up-down, and diagonal are displayed graphically

for the SAR image at Figure 34(a) and for the generated clutter at Figure 34(c). Comparing

theses two plots the SAR image is more correlated (pixel to pixel) than the generated

clutter scene. Different sized windows were taken from different areas within each of the

clutter scene yielding similar result. The generated clutter can be correlated by using a

two dimensional filter. The correlation function of the clutter is controlled by the transfer

function of the filter. A simple schematic of a one-dimensional filter is shown in Figure 35.

In Figure 35, the input x(t) is related to the output y(t) according to the following

equation:
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XpatchES Clutter Scene gs_f1000_000_d45rhh

Pixel - Pixel correlation (GS image)

! ! ' r T ; i y T

o2 ; R S S N S
5 6
Number of Pixels

(b)

Pixel — Pixel comelation (Generated Image)
1 T T T T T T T T

Generated Gaussian Clutter

3 7 RIOTeLS o

08

0.6

0.2

o2 A S S S S S
5 6
Number of Pixels

(c) (d)

Figure 34. Images and Correlation Plots: (a) XPATCH-ES clutter scene (b) Pixel to Pixel
correlation, (c) Generated clutter scene , and (d) Pixel to Pixel correlation.
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x(t) Filter y(t)

Input h(t) Output

Figure 35. Simple Schematic of a Filter

where h(t) is the impulse response of the filter. The autocorrelation of x(t) is

R..(t) = E[z(t)z(t—T1)]. (38)

The autocorrelation of y(t) is

Ryy(r) = Ely(t)y(t—M)] (39)

(!

E [/w h(1)e(t — 7)dr f_o:o h(t = Aot — 7 — A)dr]

— o0

E [RM(A) ] " bt / - )\)dr] .

- 00 -0

Accordingly, the impulse response of the filter determines how correlated the clutter
is. For a 2-D case a 2-D filter is used and as in the one dimensional example the impulse

response of the filter determines the spatial correlation of the clutter.

3.5.4 Weibull Clutter Generator. ~ The Weibull clutter generator is based on the
transformation of a random variable with uniform distribution to a random variable with

a Weibull distribution. The transformation is defined as [19]

w = F7'w (40)
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where w is the required random variable, F; ! is the inverse cumulative distribution function
of w (Weibull for this example) and u is a random variable with uniform distribution.
Using the transformation defined at Equation 40, clutter or noise of any distribution can
be formed providing the inverse cumulative distribution function of the required clutter

exists. The Weibull cumulative distribution function is defined as
w
Fw) = 1-ep{~(2y] (41)
where 7 and v are shape parameters. Applying the transformation (Equation 40) yields
wi = nl-In(u). (42)

Thus, uncorrelated Weibull clutter, with shape parameters n and v, can be generated
by forming a matrix of random variables with uniform distribution and applying it to
Equation 42. Using this technique Weibull clutter was generated. Figure 36 shows an
image of the Weibull distributed clutter and a histogram of the pixel intensities. The

Matlab code for the Weibull clutter generator is at Appendix A.

3.6 Summary

In this chapter an analysis of the XPATCH-ES data was performed. In addition,
Gaussian, Rayleigh and Weibull clutter models were developed and generated. Gener-
ated clutter of different distributions is useful for testing and digitally simulating target

detection systems in different types of terrain.
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Figure 36. a) Image of Generated Weibull clutter, and b) Histogram of Pixels
The data analysis involved a statistical analysis and a feature extraction. From this
analysis it was shown that the standard deviation is significantly larger for targets than
clutter, and combined with the 2-Dimensional correlation coefficient are good features for
discriminating targets and clutter false alarms. Polarimetric and wide angle covariance
matrices (PCMs and WACMs) were formed and analyzed. Polarimetric covariance param-
eters of man made targets were shown to be different to those of clutter. Both covariance
matrices have a definite structure. For the PCMs all the off diagonal elements are approx-
imately zero, and the WACM for clutter was shown to be a diagonal matrix with uniform
diagonal elements. Whereas for targets the main diagonal elements vary. An analysis of the
WACM proved the assumption that trees and ground clutter are angle invariant, whereas
targets ‘look’ different at even small changes in aspect angle. The covariance matrices
developed and formed in this chapter shall be used with the polarimetric and WASAR

algorithms derived in Chapter II. These results are presented in Chapter IV .
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1V. Results

In this chapter the target detection capabilities of the polarimetric and wide angle
algorithms are quantified. First, a polarimetric analysis is performed on four different
polarimetric data sets. Polarimetric images are formed using the Average, Span, POW,
PMF and PWF algorithms. The speckle and the target detection capabilities of each of
these polarimetrically combined images shall be assessed and quantified using T/C ratios,
S/M ratios, ROC curves, discriminator performance and plots of target and clutter pdfs.
Then, a multi aspect angle analysis is performed on three multi aspect angle data sets.
The wide angle images will be formed using the WASAR average, WWF and AWWF
(for various sized pixel window) algorithms. The target detection performance of these
algorithms shall be assessed using the same metrics listed above. A comparison between
polarimetric and WASAR. processing is performed with the aim of determining the best
type of processing for target detection. Finally, images are generated by a combination
of polarimetric and wide angle techniques. The resulting images shall be analyzed with

respect to target detection performance.

4.1 Polarimetric Processing

This section provides the results of polarimetrically combining the HH, HV and VV
images. The three polarimetric images were combined to produce a single image of a target
scene. The polarimetric images were combined by five different algorithms: 1) Average, 2)
Span, 3) POW, 4) PMF and 5) PWF. These algorithms are compared with respect to the
T/C ratio, S/M metrics, plots of target and clutter pdfs, ROC curves and discriminator

performance.
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The S/M ratio is a metric that quantifies the picture quality. It measures the amount
of speckle in an image. A low S/M ratio indicates a minimum speckle image. The T/C
ratio indicates an improvement in target detection. A high T/C ratio is desirable. As
discussed in Chapter II, the detection of targets embedded in clutter is a two class detection
problem. The probability of detection is increased and the probability of false alarm is
reduced if the distance between the means of the pdfs of the two classes (targets and
clutter) is increased while keeping constant variance. Accordingly, the plots of the pdfs of
the targets and clutter give a good indication of the target detection performance of the
different polarimetric algorithms. If the polarimetric algorithm separates the target and
clutter pdfs then it is theorized that this algorithm has improved target detectability. For
ROC curves, a resultant high Pp with a low Py,, the better is the polarimetric algorithm.
Finally, for the discriminator, a good polarimetric algorithm is one that separates targets
and clutter in feature space. The further the two classes are separated in feature space are

the better the algorithm.

The PWF can be formed by either a direct estimation of the polarimetric covariance
matrix and by combining the images via y = X TE}lX or by using Equation 15 derived
by Novak [15]. Better results were achieved using the direct estimation of the polarimetric
covariance matrix method. Accordingly, the PCM and the WACM used for each data set
shall be presented. The PWF algorithm produces an intensity image (i.e. y = X ]LE}lX ).
Therefore, all images that are not intensity images (such as the PMF and the unprocessed
HH, HV and VV images) shall be converted to intensity images so that the effects of each
algorithm can be effectively compared. For example, the H H image must be multiplied

by HH* to produce the |H H|? which is an intensity image.
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Four different data sets will be used to determine the performance improvements of
polarimetrically combining the HH, HV and VV images. The first data set consists of
just ground clutter with no targets (/xpatches/gsrotat [m30hh,m30hv,m30vv}). This data
set is a polarimetric WASAR data set. That is, it contains HH, HV and VV images at
aspect angles of -30°, 0° and 30°. It will also be used in the wide angle processing analysis.
The second data set is a segment of the WASAR data set (Data Set 1 - HH, HV, and
VV at an aspect angle of -15%) that contains only one target in ground clutter. Figure 37
shows images of the first two data sets. The third data set is the HH, HV and VV images
at -30° aspect angle of Data Set 1 (WASAR). The ground scene and polarimetric images
of this data set are at Figures 11 and 13 respectively. The fourth data set consists of a
more complex target scene containing twelve targets, corner reflectors, roads, fences, trees
and ground clutter. The ground scene and polarimetric images (HH, HV and VV) of this
more complex target scene are at Figure 38. The purpose of using different data sets
with increasing levels of complexity, is to test the polarimetric algorithms under varying
conditions. Further, stepping from a simple scene, to a scene containing one target at
one orientation, to more complex scenes with multiple targets at various orientations, the
number of variables is controlled and the effects of each algorithm can be assessed under

the changing conditions.

4.1.1 Polarimetric Data Set 1. The first data set, although containing no targets,
is analyzed to show the effect of each polarimetric algorithm on simple ground clutter. The
polarimetric images of Data Set 1 were combined using the Average, Span, POW and the

PWF. (The PMF was not used as there are no targets in the image.). The equations
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(b)
Figure 37. Images of: (a) Polarimetric Data Set 1, and (b) Polarimetric Data Set 2
for these algorithms are at Section 2.3 and the Matlab code for each algorithm is at

Appendix A. The polarimetric covariance matrix for this data set is

1.00 + 50.00 0.0358 — 70.0839 0.2357 — 70.1846

Yx-potarps1 = 0.0064 | 0.0358 + j0.0839 0.3010 + 50.00 0.0273 + j0.0101

0.2357 + j0.1846 0.0273 — j0.0101  0.7854 + 70.00

The form of the PCM is in line with the polarimetric clutter matrices analyzed in

Chapter III.

As the data set contains no targets, the only metrics that can be used to compare
the polarimetric algorithms are the S/M ratio and the effect that each algorithm has on
the clutter pdf. Table 11 shows the S/M ratios for each algorithm and Figure 39 shows
plots of the clutter pdfs. Direct plots of the normalized histogrammed pixel intensities are
used in this chapter rather than parametric estimates of the densities. This was done to

show more accurately the effects of the processing.
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Figure 38.

HH IMAGE

Polarimetric Images Polarimetric Data Set 4 (AFITF1000D45 data set): (a)
HH, (b) HV, (¢) VV, and (d) Ground truth map.

Table 11. S/M ratios for polarimetric Data Set 1
[THHP[[HV? | [VV]* [ Average | Span | POW | PWF |
[ 1.2667 ] 1.0365 [ 1.0652 | 0.8345 [ 0.7731 ] 0.7247 | 0.7267 ||
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Figure 39. Clutter Pdfs of Polarimetric Data Set 1: (a) |HH|? (b) Average, (c) Span,
(d) POW, and (e) PWF.
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Referring to Table 11, the PWF and the POW algorithms produced the minimum
speckle intensity images. This was expected as both of these algorithms were derived to
reduce speckle by a Lagrange minimization of the S/M ratio. From Figure 39 it can be
seen that all of the polarimetric algorithms actually spread the clutter pdfs. This is an
undesirable effect for target detection purposes as the closer the target and clutter pdfs
are the greater is the probability of clutter false alarms. Notwithstanding, a similar spread

on the target pdf could increase the probability of detection.

4.1.2 Polarimetric Data Set 2. The polarimetric images of Data Set 2 were
combined using the Average, Span, POW, PMF and the PWF algorithms. For this data set
S/M and T/C ratios were computed; target and clutter pdfs (direct normalized histograms)

were formed and plotted, and ROC curves were computed and plotted.

The polarimetric covariance matrix for this data set is

{ 1.00 4 50.00 0.0199 — 70.0834  0.3802 — 50.0135

Yx-potarps2 = 0.0102] 0.0199 + j0.0834  0.2458 + j0.00  —0.0622 + 70.0381

I 0.3802 + j0.0135 —0.0622 — 70.0381 1.1733 4+ 50.00

Comparing the two covariance matrices of polarimetric Data Sets 1 and 2, the
E{|HH|*} for Data Set 2 is larger than that of Data Set 1 due to the target. The
other observation is that the VV return is stronger than the HH return (E{|VV|*} =
1.1TE{|HH|?}). This is also a result caused by the target which provides a stronger

return in the VV polarization than in the HH polarization.
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Table 12. S/M and T/C ratios for Polarimetric Data Set 2

|HH|? | |[HV?| | [VV|* | Average | Span | POW | PMF | PWF
S/M Ratios 7.68 5.23 | 16.14 10.80 10.11 | 8.47 | 1533 7.58

T/C Ratios (dB) || 18.58 | 15.74 | 22.36 20.21 19.85 | 18.97 | 21.86 | 19.34

Table 12 lists the S/M ratios and the T/C ratios for Data Set 2. In comparison to the
S/M ratios of Data Set 1 (Table 11), the S/M ratios for this second data set are significantly
higher due to the presence of the target. Further, there is more range in the values of the
S/M ratios for the unprocessed images (i.e. |HV|?=5.2324, |[VV|*=16.1430). However,
when comparing the polarimetric methods of combining the three images, the PWF has the
lowest S/M ratio, indicating a minimum speckle image was formed. The T /C ratios indicate
that the VV image with no processing, provides the best target detection performance using
this metric. This strong VV return is evident in the polarimetric covariance matrix. The
polarimetric matched filter which was derived by maximizing the T /C metric also provides
good target detection performance. However, as previously stated, the problem with this
algorithm is that it uses a priori knowledge of the target’s location to form the target
covariance matrix. The average and the span algorithms, which are the simplest methods
of combining the polarimetric images, have better target detection performance (using
this metric and excluding the PMF algorithm) than the other polarimetric algorithms.
Figure 40 shows plots of target and clutter normalized histograms. These plots are not
the true pdfs of the target and clutter, they are direct plots of the clutter and pixel
histograms where the bin size for each is different. This was done so that the effect of each
algorithm on the target histograms (which contain a smaller number of pixels with a larger
variance) could be seen. Referring to Figure 40, the most obvious difference between the

plots of the target and clutter histograms is that the variance of the target histograms is
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significantly larger than that of the clutter histograms. This discriminating characteristic
was discussed in detail in Chapter III. Referring to Figure 40(e), the PMF algorithm has

effectively reduced the clutter variance compared to the other polarimetric algorithms.

Figure 41 shows plots of ROC curves for each polarimetric algorithm. As expected,
for such an easily detectable target, all the ROC curves show high probability of detection
with very small probabilities of clutter false alarms. The best result using this metric is

the polarimetric average (Figure 41(b)) which shows a Pp=0.9 for a P;,=0.1.

The final test of the target detection performance of each polarimetric algorithm
is the discriminator. For this data set, each image (formed by the different polarimetric
algorithms) was detected using a constant threshold and then applied to the discriminator.
The threshold level was set at the mean of the pixel intensities plus one standard deviation
(1 + o). The 2-D correlation coefficient and the standard deviation feature pair were used
in the discriminator, and a target template of 16 x 10 pixels was used. Figure 42 shows the
results of testing each algorithm in the discriminator. For all algorithms the target and
clutter have been clearly separated. The PMF mapped the target, tree and ground clutter
into tight clusters within their respective areas in feature space. All of the polarimetric

algorithms reduced the number of clutter false alarms compared to the unprocessed image.

In summary, for this simple single target data set the following observations are made.
The PWF algorithm produced the minimum speckle (lowest S/M ratio) image of all of the
polarimetric combining algorithms. It was noted through an analysis of the PCM that the
VV return for this data set was higher than either the HH or HV returns. This was due

to the target and the T/C ratios confirmed this (i.e. [VV|? T/C ratio approximately 4 dB
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(d) POW, (e) PMF, and (f) PWF.
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Figure 42.

Discriminator Results for Polarimetric Data Set 2:
(c) Span, (d) POW, (e) PMF, and (f) PWF.

(a) |[HH|* (b) Average,
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larger than the |H H|* T/C ratio). Plots of the clutter and target histograms, ROC curves

and discriminator results for all algorithms were, as expected, extremely good.

4.1.8 Polarimetric Data Set 3. This data set is the first complete and more
complex target scene. It contains five targets at various rotations, and two different types

of clutter terrain (trees and ground clutter).

The polarimetric covariance matrix for this data set is

1.00 + 50.00 0.0055 4 70.0847 0.0160 + 50.1099

Yx-potarnss = 0.0374| 0.0055 — j0.0847 0.3623 + j0.00  0.0229 + j0.0120

] 0.0160 — j0.1099 0.0229 — 50.0120 0.8756 + j0.00

Once again the form of the PCM is in line with previous results. The combined polarimetric
images using the average, span, POW, PMF and the PWF polarimetric algorithms, for
both data sets, are shown in Figure 43. The HH image for both data sets has been included
for comparison purposes so that the visual effects of the different polarimetric techniques
can be observed. Referring to Figure 43, the PWF image is the clearest and most defined
image. That is, the trees and targets look brighter (whitened) and more defined than in
any of the other polarimetric images. This is because the PWF algorithm was derived by
minimizing the S/M ratio to produce an intensity image having a minimum amount of

speckle.

The S/M and T/C ratios were calculated for each algorithm and the results are
listed in Table 13. As expected the PWF and the POW images have the lowesest S/M

ratios (minimum speckle image). The T/C ratios of all the algorithms are relatively close,
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Figure 43. Combined Polarimetric Images of Data Set 3 using the: (a) |H H|* (b) Aver-
age, (c) Span, (d) POW, (e) PMF, and (f) PWF.
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Table 13. S/M and T/C ratios Polarimetric Data Set 3

HH | HV | VV | Average | Span | POW | PMF | PWF
S/M Ratio 2.86 | 2.76 | 3.06 2.41 234 | 233 | 2.66 | 2.32

T/C Ratio (dB) || 10.35 | 9.97 | 11.04 | 10.58 | 10.50 | 10.47 | 10.87 | 10.49

however, they are on average 0.5 dB lower than the maximum unprocessed T/C ratio

(VV).

Figure 44 shows plots of clutter and target normalized histograms. The structure
of the clutter histogram in this data set is different than the clutter histograms seen in
the previous two data sets. That is, it consists of a high narrow peak at low threshold
values, corresponding to the ground clutter, and a longer tail corresponding to the trees at
higher threshold levels. The tail, with its higher valued pixel intensities (trees) is the main
cause of clutter false alarms. Referring to Figure 44, the target and clutter normalized
histograms for all of the polarimetric algorithms have not been significantly separated.

The T/C values reinforce this observation.

Plots of ROC curves for each algorithm are at Figure 45. As was the case for the
T/C ratios there is not a large noticeable difference in target detectability between the

different algorithms.

The results of testing each polarimetrically combined image in the discriminator are
shown at Figure 46. These results show that the PWF, POW and the Span algorithms have
effectively separated targets from clutter false alarms. The clutter false alarms are more
tightly clustered (in feature space) so that a threshold level of 0.05 (standard deviation)
would effectively eliminate the majority of clutter false alarms. Hence, although the PWFs’

target detection performance was below that of the average and PMF algorithms, it appears
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Table 14. S/M and T/C ratios Polarimetric Data Set 4

HH | HV | VV | Average | Span | POW | PMF | PWF
S/M Ratio 18.91 | 6.62 | 16.94 15.53 14.23 | 11.68 | 11.90 | 11.58

T/C Ratio (dB) || 17.06 | 9.35 | 15.48 16.05 15.65 | 14.68 | 14.10 | 14.69

to be an effective discriminating algorithm using the standard deviation and 2-d correlation

coefficient features.

4.1.4 Polarimetric Data Set 4.  The last polarimetric data set is the most com-
plex. It contains twelve targets, man made clutter (fences, corner reflectors), and different

regions of natural clutter.

The polarimetric covariance matrix for this data set is

1.00 + 70.00 0.0135 — 50.0460 —0.1008 — 70.0692

Yx-potarps1 = 0.0064} 0,0135+ j0.0460  0.1797 + j0.00  0.0124 — j0.0079

—0.1008 + j0.0692 0.0124 — 70.0079 0.5893 + 50.00

The polarimetric images formed by each algorithm are displayed at Figure 47 Referring
to Figure 47, the PWF image is the clearest and most defined. The S/M and T/C ratios
were calculated for each algorithm and the results are listed in Table 14. As expected the
PWF and the OW images have the lowesest S/M ratios (minimum speckle image). The
T/C ratios show that the polarimetric average and span algorithms have the highest T/C

ratios.

Figure 48 shows plots of clutter and target normalized histograms. All of these plots
show that there is a lot of overlap between the two pdfs. None of the algorithms have

effectively separated the two pdfs.
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Figure 47. Combined Polarimetric Images of Polarimetric Data Set 4 using: (a) |[HH|?,
(b) Average, (c) Span, (d) POW, (e) PMF, and (f) PWF.
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Plots of ROC curves for each algorithm are at Figure 49. As was the case for the
T/C ratios there is not a large noticeable difference in target detectability between the

different polarimetric algorithms.

The results of testing each polarimetrically combined image in the discriminator are
shown at Figure 50. This target scene contains a lot more man made clutter (i.e. corner
reflectors, fences etc.), hence, the separation is not as defined as it was for Data Set 3
which contains only natural clutter. Notwithstanding, a low standard deviation threshold

would effectively eliminate the majority of ground clutter false alarms.

4.1.5 Target Detection of Polarimetric Algorithms.  Target detection of the differ-
ent polarimetric images was performed using a constant threshold. This technique involves
setting a threshold and testing each pixel within an image with respect to this threshold
value. If the PUT exceeds the threshold, a target is declared. As discussed in Section 2.5,
at a low threshold all the targets should be detected, however, a low threshold will also
generate a large number of false alarms. Increasing the threshold level decreases the num-
ber of false alarms but the number of targets detected also decreases. The threshold is set
according to system operating requirements (i.e. trade off between number of false alarms
and the number of missed detections). All of the images generated from the different tech-
niques were normalized such that the amplitudes of the pixel intensities ranged from zero
to one. Figure 51 shows plots of each polarimetric image at the same threshold level of
0.2. The ‘x’ in the images indicates pixel areas that exceed the threshold and the ‘o’ shows
the actual locations of the targets. The target detection algorithm (Detect.m in Appendix

A) would score a hit if one or more pixels in a pixel window of 16 x 10 pixels exceeded the
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threshold. This technique eliminated multiple hits within an area of interest. Referring
to Figure 51, all targets were detected in all of the images. However, the number of false
alarms, at this low threshold, is high for the |H H|?, average and PMF images and zero
for the POW, PWF and Span images. If the threshold level is increased, the number of
false alarms for the |H H|?, average and PMF images decreases until no false alarms are
recorded, and the number of missed detections for the POW, PWF and Span images in-
creases. Figure 52, which shows plots of threshold verses detected targets and false alarms,
graphically illustrates this point. These plots show that for all the images formed from
the different polarimetric algorithms a range of threshold values is reached where all tar-
gets are detected for no false alarms. This technique is not suitable for quantifying target
detection performance between algorithms. The T/C ratio, ROC curves and discrimina-
tor performance are more suitable metrics for assessing and quantifying improvement and

hence will be the metrics focused on for assessing the target detection algorithms.

4.1.6 Discussion of Polarimetric Processing.  The analysis performed in this sec-
tion showed that the polarimetric algorithms did not provide any significant improvement
in target detection performance. The PWF image had the lowest S/M ratio indicating
a minimum speckled image was formed. Figures 43 and 47 illustrate this point. The
T/C ratios for all polarimetric algorithms were lower than the maximum T/C ratio of the
unprocessed images (refer Tables 12, 13 and 14). Plots of target and clutter normalized
histograms and ROC curves also did not indicate any significant improvement in target
detection over the unprocessed images. However, the discriminator results showed that the

PWF, POW and Span algorithms effectively separated targets from clutter false alarms in
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Figure 51. Target detection performance of polarimetric Data Set 3 using a constant
threshold for: (a) HH , (b) Average, (c) Span, (d) POW, (e) PMF and (f)
PWF. 108
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Figure 52.

(a) HH , (b) Average, (c) Span, (d) POW, (e) PMF, and (f) PWF.
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feature space. Results from the use of a constant threshold detector showed that all targets
were detectable (in a range of thresholds) for no clutter false alarms. At low thresholds,
the PWF, POW and Span images had the minimum number of clutter false alarms when
compared to the other polarimetric algorithms. However, this technique was considered

unsuitable for comparing the algorithms.

4.2 Wide Angle Processing

This section provides the results of combining the images at different aspect angles
into the one image for target detection purposes. Three wide angle algorithms are investi-
gated: 1) Average, 2) WWF, and 3)AWWF. The wide angle matched filter was not tested
because this algorithm relies on a prior: information of target locations. For the AWWF,
algorithm results are presented for two cases: 1) a window size of 20 x 20 pixels; and 2)
a window size of 10 x 10. The algorithms are compared with respect to S/M ratios, T/C

ratios, target and clutter pdfs, ROC curves and discriminator performance.

Three wide angle data sets have been used for this analysis. Wide angle Data Set
1 comes from the same set of images used for the polarimetric analysis. The full data set
contains 9 images (HH, HV and VV at aspect angles of -30°, 0° and +30°). The image
contains no targets, it contains simple ground clutter, and the HH set of the images shall
be used (i.e. 3 images HH @ -30°, HH @ 0° and HH @ +30°). The second data set is a
segment of the WASAR data set that contains only one target in simple ground clutter.
This data set contains seven images and the HH subset shall be used (i.e. 7 images HH
@ -45°, HH @ -30°, HH @ -15°, HH @ 0°, HH @ +15°, HH @ +30° and HH @ +45°).

Figure 37 shows images of these first two data sets. The third data set is the WASAR
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Table 15. S/M ratios for Wide Angle Data Set 1
|HH|?-30° | |[HH?|0° | |HH|*30° | Average | WWF
1.2667 1.2738 1.2664 0.7302 | 0.7307

Data Setl. The ground scene and polarimetric images of this data set are at Figures 11

and 13 respectively. The HH set of images at the 7 different aspect angles shall be used.

4.2.1 Wide Angle Data Set 1. This data set contains no targets. The purpose
of this analysis is to confirm the results obtained in the analysis of wide angle clutter
covariance matrices and investigate the S/M ratio for the unprocessed images and for each

wide angle algorithm.

The WACM for this data set is

1.00 + 50.00 —0.0071 — j0.0059 0.0042 + j0.0067

Yx-wacm-ps1 = 0.0064 | _0 0071+ j0.0059  1.0126 4 j0.00  0.0070 + 50.0015

0.0042 — 70.0067  0.0070 — 50.0015 0.9527 + 70.00

The form of this covariance matrix is as expected. That is, the return at different
aspect angles for ground clutter is relatively constant. S/M ratios were computed for each

unprocessed image and for each wide angle algorithm. The results are at Table 15.

The S/M ratios illustrate that the Average and the WWEF have reduced the speckle
compared to the unprocessed images, and there appears to be no difference between the
two algorithms. For the ‘no target’ condition the WACM is simply an identity matrix.

Accordingly, the WWF and the average algorithm are the same for the ‘no target’condition.
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4.2.2 Wide Angle Data Set 2.  This data set contains seven images (aspect angles
-45° to -45° in -15° increments). The target scene contains one target and one tree in
ground clutter. The Average, WWF, AWWF (20 x 20 pixels) and the AWWF (10 x 10
pixels) are used to form a single image for target detection testing. For this data set S/M
ratios and T/C ratios are computed and the algorithms are evaluated by plotting target

and clutter pdfs, ROC curves and discriminator performance.

The WACM for this data set is

0.5228 0.0473 0.1082 0.0218 0.0587 0.0437 0.0385
0.0473 0.3778 0.0601 0.0715 0.0514 0.0186 0.0482
0.1082 0.0601 0.3715 0.0239 0.0552 0.0473 0.0124
Yx-wacu-ps2 = 0.0527) 00218 0.0715 0.0239 1.0000 0.2687 0.1617 0.0181
0.0587 0.0514 0.0552 0.2687 0.7121 0.1853 0.0752

0.0437 0.0186 0.0473 0.1617 0.1853 0.7712 0.0245

0.0385 0.0482 0.0124 0.0181 0.0752 0.0245 0.3295

Referring to the angle covariance matrix, the largest values are along the main di-
agonal of the matrix. The maximum value occurs in the middle of the matrix which
corresponds to the 0° aspect image. The form of the WACM is in line with the results of
a target WACM presented in Chapter ITI. That is, the diagonal elements of the WACM

vary for different aspect angles.

The S/M and T/C ratios were calculated for each algorithm and the results are listed
in Table 16. The S/M results show that the WWF produces the image with the smallest

S/M ratio of all the wide angle combining algorithms. The T/C ratios show that the
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Table 16. S/M and T/C ratios Wide Angle Data Set 2
Ave | WWF | AWWF-1 | AWWE-2
S/M 9.44 9.32 13.87 15.63

T/C (dB) || 20.87 | 20.80 | 24.34 24,68

AWWT with a non overlapping window size of 10 x 10 pixels has a 3.8 dB improvement over
the average algorithm and a 1.6 dB improvement over the strongest unprocessed image (HH
@ 0°). Comparing this result to the polarimetric algorithms (refer Table 12), for the exact
same target scene, the AWWF (10 x 10 pixel window) has an improvement of 2.8 dB over
the PMF (which uses a priori knowledge of the targets location), and a 4.5 dB improvement
over the next best (average) polarimetric combining algorithm. Accordingly, using the
T/C metric, wide angle processing - in particular the AWWEF - provides significantly
better target detection performance than the other polarimetric algorithms. Figure 53
shows selected regions of the unprocessed image and the AWWF (10 x 10 pixel window)
image. This figure illustrates the enhancement effect of all the pixels within a pixel window

containing a target.

(b)
Figure 53. Images of: (a) |[HH|? 0°, and (b) AWWTF (10 x 10 pixels)
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Figure 54 shows plots of clutter and target normalized histograms of each wide angle
algorithm for wide angle Data Set 2. The HH image at an aspect angle of +15° is used as
a reference. These plots show that the wide angle algorithms have increased the variance
of the targets pdf. That is, for the unprocessed image (Figure 54(a)) the mean value
of the target histogram is closer to the clutters. Whereas, the mean value of the target
histograms, for the wide angle algorithms, is further away from the clutter pdf. Thus,

these algorithms have separated the two pdfs.

Plots of ROC curves for each algorithm are at Figure 55. Referring to this set of
plots, a major difference can be seen between the unprocessed image |HH|* 4+15° and
the wide angle algorithms. The AWWF (10 x 10 pixels) ROC curve is clearly the best
result for this data set. This algorithm provides a significantly higher Pp for a very low
Ps,. Further, all the wide angle algorithms show significantly better results than the
polarimetric algorithms (refer polarimetric ROC curves Figure 41). Accordingly, using the
ROC curves as a measure of target detection performance also confirms the T/C results

that the wide angle algorithms out perform the polarimetric algorithms.

The results of testing each polarimetrically combined image in the discriminator,
using a pixel window of 16 x 8 pixels are shown at Figure 56. Referring to Figure 56,
these plots show that the AWWTF (for both window sizes) algorithm, combined with the
threshold detector and discriminator, effectively eliminated all but one ground clutter false
alarm, the tree is displayed centrally (in feature space) between the ground clutter and
the target, and the single target is shown in the top right hand corner of the feature plot

(i.e. high correlation coefficient and high standard deviation). Thus, the discriminator
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also shows that the wide angle algorithms discriminate targets from clutter false alarms

more effectively than do the polarimetric algorithms.

4.2.8 Wide Angle Data Set 3. This final wide angle data set contains seven
images (aspect angles -45° to -45° in -15° increments). The target scene is more complex,
containing five targets and two different terrain categories. The Average, WWI', AWWEF-
1, and AWWF-2 algorithms are used to combine the seven images into the one image for
target detection testing. Testing of this wide angle image involves computing S/M and
T/C ratios, plotting target and clutter histograms, ROC curves and discriminator output

curves.

The WACM for this data set is

(0.8996 0.0088 0.0290 0.0211 0.0057 0.0047 0.0089
0.0088 0.8565 0.0127 0.0101 0.0067 0.0075 0.0113
0.0290 0.0127 0.8885 0.0123 0.0102 0.0077 0.0064
Yx-wacm-pss = 0.0436| 90211 0.0101 0.0123 1.0000 0.0228 0.0117 0.0031
0.0057 0.0067 0.0102 0.0228 0.9222 0.0369 0.0155

0.0047 0.0075 0.0077 0.0117 0.0369 0.9620 0.0014

0.0089 0.0113 0.0064 0.0031 0.0155 0.0014 0.8289

Referring to the angle covariance matrix, the largest values are along the main di-
agonal of the matrix. The maximum value occurs in the middle of the matrix which

corresponds to the 0 degree aspect image. This form of the WACM is in line with the
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Table 17. S/M and T/C ratios for Wide Angle Data Set 3

Ave | WWF | AWWEF-1 | AWWF-2
S/M_ | 3.0926 | 4.2938 | 13.87 15.63
T/C (dB) || 1320 | 14.58 | 16.14 16.21

results of a target and clutter WACM presented in Chapter III. That is, the diagonal

elements of the WACM are approximately uniform.

The S/M and T/C ratios were calculated for each algorithm and the results are listed
in Table 17. The S/M results show that the Average produces the image with the smallest
S/M ratio of all the wide angle combining algorithms. The T/C ratios show that the
AWWTF with a non overlapping window size of 10 x 10 pixels has a 3 dB improvement over
the average algorithm, however it is 0.23 dB less than the best unprocessed images T/C
ratio (HH @ 0°). This unusual result is due to a very high HH 0° return. The S/M ratio
for the HH 0° is considerably higher than the S/M ratios of the images at other aspect
angles. Further, an examination of the intensity image of the HH @ 0° (refer Figure 58)
reveals bright glints were the targets are located. The VV and HV data sets were tested
and the AWWTF (10 x 10) T/C ratio showed an improvement of 1.8 dB over the strongest

return for the HV data set and a 0.4 dB improvement over the strongest HV return.

Comparing the T/C results to the polarimetric algorithms (refer Table 12), for the
exact same target scene, the AWWTF (10 x 10 pixel window) has an improvement of 5.34
dB over the PMF (which uses a priori knowledge of the targets location), and a 5.72 dB
improvement over the PWF. Accordingly, using the T/C metric wide angle processing, in
particular the AWWT provides significantly better target detection performance than the

polarimetric algorithms.
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Figure 58 shows the images formed from the different wide angle algorithms. These
images highlight the following points. First, the average algorithm destroys the quality of
the image, however, the averaging effect highlights the targets and reduces the intensity
of the trees and ground clutter. The WWF, on the other hand, maintains the image’s
quality and shows a 1.38 dB improvement in T/C ratio over the WASAR average. Finally,
the AWWTF significantly highlights the target’s location by enhancing all the pixels in
the location of the target, leaving squares of high intensity pixels. The smaller windowed
AWWTF has primarily enhanced the target and not the surrounding clutter (refer Figure 58
(¢))-

For a square non overlapping window, the optimum window size was determined by
decreasing the window size from 60 x 60 pixels down to 2 x 2 pixels and computing the
T/C ratio for each AWWF image formed. Using this method the optimum sized window
was determined to be a 10 x 10 pixel window. This result is graphically illustrated in

Figure 57 which is a plot of T/C ratio versus window size.

T/C Ratio (dB)

L
0 30 40 50 60
Window Size (pixels)

Figure 57. Plot of Window Size versus T/C Ratio
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Figure 58. Combined Wide Angle Images of Data Set 3 using the: (a) |[HH|* 0°(b)
Average, (c) WWF, (d)AWWF (30 x 30 pixels), and (¢) AWWF (10 x 10
pixels). 121




Figure 59 shows plots of clutter and target normalized histograms of each wide angle
algorithm for wide angle Data Set 2. The HH image at an aspect angle of +15° is used
as a reference. All of the wide angle algorithms have effectively separated the target and

clutter pdfs.

Plots of ROC curves for each algorithm are at Figure 60. Referring to this set of
plots, a big difference can be seen between the unprocessed image |H H|* +15° and the
wide angle algorithms. As was the case with wide angle Data Set 2, the AWWF (10 x
10 pixels) ROC curve is clearly the best result for this data set. This algorithm provides
a significantly higher Pp for a very low Pj,. Further, all the wide angle algorithms show
significantly better results than the polarimetric algorithms (refer polarimetric ROC curves
Figure 45). Accordingly, using the ROC curves as a metric of target detection performance
also confirms the T/C results that the wide angle algorithms out perform the polarimetric

algorithms.

The results of testing each polarimetrically combined image in the discriminator,

using a pixel window of 16 x 8 pixels are shown at Figure 61.

4.2.4  Summary of Wide Angle Processing. The wide angle algorithms showed
better T/C ratios and ROC curve results for the same target scenes than all of the po-
larimetric algorithms. Figure 62 is a plot of ROC curves of WASAR Data Set 1 for the
AWWEF, WWF, PWF algorithms and the |H H|? +15° unprocessed image. From this fig-
ure, the AWWTF algorithm provides the best target detection performance of all the wide
angle and polarimetric algorithms investigated. The simpler WWF also provides a sig-

nificant improvement in target detection compared to the polarimetric algorithms. This
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Figure 62. ROC curves of AWWF, WWF, PWF and |HH|* +15°

comparison is based on seven different aspect images combined into the one image versus
three different polarimetric images. In the following section a direct comparison of three

different aspect images versus three polarimetric images is presented.

4.8 Comparison of Polarimetric and Wide Angle Processing

In Section 4.2 it was shown primarily through the T/C ratio and ROC curves, that
wide angle processing provided superior results to polarimetric processing. In this section, a
direct comparison of three wide angle images versus three polarimetric images is presented.
WASAR Data Set 1 shall be used for the analysis (i.e. 21 fully polarimetric images at 7
different aspect angles). For the wide angle images different combinations of three images
at different aspect angles selected from the seven VV images of the WASAR data set shall
be used. The different combinations of three images include the following: 1) -45° : 0°
4450, 2) -15° 1 0° 1 +15°, 3) -45° : -30° : -15°, 4) +45° : +30° : +15°, 5) -30° : 0° :
+30°, 6) -45° : 0° : 4+30°, and 7) 0° : +30° : +45°. The combination with the highest

T/C ratio shall be used to compare with a polarimetric set of images. Likewise, T/C
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Table 18. T/C ratios for seven different polarimetric data sets

-45° | -30° | -15° 0° +15° | +30° | 445°
Ave (dB) || 11.56 | 10.58 | 9.87 | 14.68 | 11.97 | 13.84 | 12.27
Span (dB) || 11.28 | 12.27 | 9.44 | 14.27 | 11.52 | 13.60 | 12.32
PWF (dB) || 11.01 | 10.49 | 9.23 | 13.85 | 11.05 | 13.46 | 12.36

Table 19. T/C ratios for wide angle aspect angle combinations

1 2 3 4 5 6 7
Ave (dB) 12.59 | 11.78 | 10.81 | 12.94 | 12.89 | 12.68 | 13.61

WWF (dB) || 13.40 | 12.22 | 11.22 | 13.48 | 13.52 | 13.34 | 14.30

AWWEF (dB) || 14.25 | 13.91 | 11.52 | 16.24 | 14.84 | 14.13 | 15.97

ratios shall be computed for the seven different polarimetric data sets and the polarimetric
data set with the highest T/C ratio shall be used in the comparison. The polarimetric
algorithms being tested include the Span, Average and PWF. The wide angle algorithms

being tested include the Average, WWF and the AWWF (10 x 10 pixels). ROC curves for

each algorithm are computed and plotted.

Table 18 lists the T/C ratios for the seven different polarimetric data sets for the
Average, Span and PWF algorithms. In Table 18 the largest T/C ratio is the Average

algorithm at 0° aspect angle (T/C=14.68).

Table 19 lists the T/C ratios for the seven different aspect angle combinations for

the Average, WWF and the AWWTF (10 x 10 pixels) algorithms.

Referring to Table 19, the AWWTF provides the highest T /C ratio for all combinations
of aspect angle images, followed by the WWF. The WWF provides, on average, 0.5 to 1
dB improvement over the simple average algorithm whereas the AWWF provides 2-3 dB

improvement over the average algorithm.
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A comparison between the T/C ratios of the polarimetric algorithms and the wide
angle algorithms shows that the maximum T/C ratio occurs for the AWWF (16.24 dB).
Further, most of the T/Cs exceed the T/C ratios of the wide angle algorithms exceed the

T/C ratios of the polarimetric algorithms (refer Tables 18 and 19).

Figure 63(a) shows plots of ROC curves for the best wide angle algorithm (AWWTF)
and the best polarimetric algorithm (Average). This plot also confirms the T/C ratio
results that the wide angle algorithms investigated, in particular the AWWF', provide

superior target detection performance to the polarimetric algorithms.
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Figure 63. Direct Comparison of Wide Angle and Polarimetric Algorithms

4.4 Combination of Polarimetric and Wide Angle Algorithms

This section describes a study that combined the polarimetric and multi aspect angle
images using different combinations of the polarimetric and wide angle algorithms investi-
gated by this research. The objective of this study was to determine the optimum method
of combining the 21 images of WASAR Data Set 1 for target detection purposes. Target

detection performance is measured using the T/C ratio and plots of ROC curves.
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Seven different combinations of polarimetric and wide angle algorithms were imple-

mented. The seven algorithms compared are as follows.

o Algorithm 1: Combine the three polarimetric images at different aspect angles using

the PWF and then combine these seven images using the AWWE'.

o Algorithm 2: Combine the seven polarimetric images at different polarizations using

the WWF then combine these three images using the PWF.

o Algorithm 3: Combine the three polarimetric images at different aspect angles using
the Polarimetric Average and then combine these seven images using the Wide Angle

Average.

o Algorithm 4: Combine the three polarimetric images at different aspect angles using

the Polarimetric Average and then combine these seven images using the WWF'.

o Algorithm 5: Combine all 21 images by forming a 21 x 21 polarimetric, wide angle
covariance matrix and combine using y = XJ[EXX where x is the wide angle

covariance matrix.

e Algorithm 6: Combine the three polarimetric images at different aspect angles using

the Span and then combine these seven images using the WWEF.

e Algorithm 7: Combine the three polarimetric images at different aspect angles using

the Polarimetric Average and then combine these seven images using the AWWE.
Figures 64 and 65 show the resultant images formed from each algorithm.

Algorithms 1 and 7, which use the AWWTF algorithm, have effectively highlighted the

targets within the target scene by enhancing all the pixels around the targets’ locations
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Figure 64. Images formed from Algorithms: (a) Unprocessed HH -45°, (b) 1, (c) 2, and
(d) 3.
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(c) (d)
Figure 65. Images formed from Algorithms: (a) 4, (b) 5, (¢) 6, and (d) 7.
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Table 20. T/C ratios (dB) for the Seven Polarimetric and Wide Angle Combining
Algorithms

[ALG1[ALG2[ALG3[ALG4[ALG5 | ALG 6 [ ALG 7 |
[ 29.03 | 25.25 | 27.75 | 25.26 | 14.01 | 24.83 [ 30.13 ||

(refer Figures 64(a) and 65(c)). The other algorithms have also significantly highlighted

the targets compared to the unprocessed image (Figure64(a)).

Table 20 lists the T/C ratios for each algorithm. These results show that Algorithm
7is the best combination, of those investigated, of polarimetric and wide angle algorithms
for target detection. Algorithm 7 provides 13.7 dB improvement in T/C ratio compared

to the maximum T/C ratio of the unprocessed images (|H H|* 0°= 16.43 (dB)).

Figure 66 shows plots of ROC curves for the seven algorithms. These results confirm
the T/C result that Algorithm 7is the best method investigated of combining the 21 images

for target detection purposes.

4.5  Summary

In this Chapter the results of applying the XPATCH-ES WASAR data to the polari-
metric and wide angle algorithms investigated by this research has been presented. From

the limited amount of data analyzed the following conclusions appear to hold:

e Wide angle processing provides superior target detection performance to polarimetric

processing.

o The AWWT algorithm, developed during the course of this research, proved to be

an effective method of combining multi aspect images for target detection.
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o As expected, using more polarimetric and wide angle images increased target de-
tectability. For example, the maximum T/C ratio for one image was 16.43 dB, using
21 images the T/C ratio increased to 30.13 dB, a processing gain of 13.7 dB. This re-
sult justifies further research into WASAR and reinforces the need for a radar system

that provides the capability of multiple looks at a target scene.

e The standard deviation and 2-D correlation co-efficient features effectively discrimi-

nate targets from clutter false alarms.
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V. Conclusion and Recommendations

5.1 Introduction

In this thesis target detection methods were investigated to detect gfound targets
embedded in clutter using WASAR images. Chapter II provides the theoretical back-
ground and the method. Chapter III presents a statistical analysis and feature extraction
of the XPATCH-ES data. Chapter IV provides the results obtained for polarimetric al-
gorithms, wide angle algorithms and combinations of both. This chapter summarizes the
results of this research and provides suggestions for future work in this area. From the

limited amount of data analyzed the following conclusions appear to hold.

5.2 Summary of Results

5.2.1 Statistical Analysis.  The statistical analysis provided the following signif-
icant results. First, the wide angle covariance analysis showed that the relative return
strength for clutter was constant at different aspect angles, whereas the returns from the
targets varied considerably at different aspect angles. That is, a tree looks the same at
different aspect angles, however, a target looks considerably different. The AWWEF was
formulated on this significant result. Second, the polarimetric covariance parameters of
the targets were shown to be different to that of clutter. The form of the polarimetric
covariance matrix of the XPATCH-ES data was in line with published results [15]. Finally,
it was shown that the standard deviation of target pixel intensities is significantly larger

than for clutter. This characteristic is useful as a discriminating feature.
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5.2.2 Feature Fztraction. The feature extraction investigated the properties
and attributes of the XPATCH-ES data that effectively separate targets from clutter false
alarms. In particular, it was shown that the standard deviation and the 2-D correlation
coefficient were good discriminating features. Using these features a simple discriminator

was designed to test the polarimetric and wide angle algorithms.

5.2.8 Clutter Models.  Gaussian, Rayleigh and Weibull clutter models were devel-
oped and generated. Generating clutter of different distributions is useful for testing and
digitally simulating target detection systems in different types of terrain. It was shown
that a clutter model will be a good fit for SAR clutter if the model parameters, such as the
distribution, mean and variance are set to those values obtained from a statistical analysis

of actual SAR clutter scenes.

5.2.4 Polarimetric Processing. Polarimetric processing provided the following
results. First, the polarimetric average algorithm proved to be the best method of combin-
ing the polarimetric images. This algorithm is successful as it computes the variance of the
polarimetric pixel intensities (i.e. polarimetric average = %Z?:l |z;|?), and it was shown
through a statistical analysis of the XPATCH-ES data that the variance is an effective
discriminating feature. Second, the PWF algorithm formed the minimum speckled im-
age. Finally, the PWF, SPAN and POW algorithms effectively combined the polarimetric

images and significantly reduced clutter false alarms in the discriminator.

5.2.5 Wide Angle Processing. The wide angle processing provided the follow-

ing significant results. First, the AWWTF algorithm developed during the course of this
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research, and based on a statistical analysis of the XPATCH-ES data, proved to be an
effective method of combining multi aspect angle images for target detection. Second, the
WWF also formulated during the course of this research and based on a statistical analysis
of the data, effectively combined wide angle images and increased target detectability. Fi-
nally, wide angle processing provided superior target detection performance to polarimetric

processing.

5.2.6 Combinations of Polarimetric and Wide Angle Algorithms. It was shown
that by using the polarimetric average algorithm (the best polarimetric algorithm) to-
gether with the AWWTF (the best wide angle algorithm) provided the best combination (of
those investigated) of the 21 XPATCH-ES images. Using this amalgamation resulted in
a significant improvement in T/C ratio and target detectability (using ROC curves) over

the unprocessed images.

5.8 Conclusion

The results obtained in this thesis lead to the following conclusions:

e Wide Angle processing provides superior target detection performance to that of

polarimetric processing.

o The additional information provided by polarimetric images at multiple aspect angles
justifies the requirement for a target detection sys